OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4250–4262

Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4250-4262 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (12494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the hybridized plasmonic-photonic modes supported by two-dimensional arrays of metallic nanoparticles coupled to light-emitting optical waveguides. Localized surface plasmon polaritons in the metallic nanoparticles can couple to guided modes in the underlying waveguide, forming quasi-guided hybrid modes, or to diffracted orders in the plane of the array, forming surface lattice resonances. We consider three kinds of samples: one sustains quasi-guided modes only, another sustains surface lattice resonances only, and a third sample sustains both modes. This third sample constitutes the first demonstration of simultaneous coupling of localized surface plasmons to guided modes and diffracted orders. The dispersive properties of the modes in the samples are investigated through light extinction and emission spectroscopy. We elucidate the conditions that lead to the coexistence of surface lattice resonances and quasi-guided hybrid modes, and assess their potential for enhancing the luminescence of emitters embedded in the coupled waveguide. We find the largest increase in emission intensity for the surface lattice resonances, reaching up to a factor of 20.

© 2013 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

Original Manuscript: November 19, 2012
Revised Manuscript: January 28, 2013
Manuscript Accepted: January 28, 2013
Published: February 12, 2013

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, "Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides," Opt. Express 21, 4250-4262 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A5, S16 (2003). [CrossRef]
  2. W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater.19, 3771–3782 (2007). [CrossRef]
  3. E. Fort and S. Grsillon, “Surface enhanced fluorescence,” J. Phys. D41, 013001 (2008). [CrossRef]
  4. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009). [CrossRef]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010). [CrossRef] [PubMed]
  6. P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys.74, 106401 (2011). [CrossRef]
  7. V. Giannini, A. I. Femandez-Dominiguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev.111, 3888–3912 (2011). [CrossRef] [PubMed]
  8. W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt.45, 661–699 (1998). [CrossRef]
  9. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006). [CrossRef] [PubMed]
  10. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. lett.96, 113002 (2006). [CrossRef] [PubMed]
  11. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007). [CrossRef] [PubMed]
  12. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008). [CrossRef]
  13. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  14. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008). [CrossRef]
  15. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009). [CrossRef]
  16. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagiuda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011). [CrossRef] [PubMed]
  17. T. Kosako, Y. Kadoya, and H. F. Hoffman, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4, 312–314 (2010). [CrossRef]
  18. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120, 10871–5 (2004). [CrossRef] [PubMed]
  19. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008). [CrossRef] [PubMed]
  20. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008). [CrossRef]
  21. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008). [CrossRef] [PubMed]
  22. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011). [CrossRef]
  23. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003). [CrossRef] [PubMed]
  24. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009). [CrossRef]
  25. S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett.109, 166803 (2012). [CrossRef] [PubMed]
  26. F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett.95, 233901 (2005). [CrossRef]
  27. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010). [CrossRef]
  28. V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38, L115–L121 (2005). [CrossRef]
  29. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A64, 417–418 (1997). [CrossRef]
  30. M. A. Verschuuren and H. van Sprang, “3d photonic structures by sol-gel imprint lithography,” in “Mater. Res. Soc. Sym. Proc.”, (MRS, New York, NY, USA, 2007), N03–N05.
  31. A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001). [CrossRef]
  32. S. Murai, K. Fujita, K. Iwata, and K. Tanaka, “Scattering-based hole burning in Y3Al5O12: Ce3+ monoliths with hierarchical porous structures prepared via the solgel route,” J. Phys. Chem. C115, 17676–17681 (2011). [CrossRef]
  33. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. Gómez Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express2, 1111–1120 (2012). [CrossRef]
  34. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009). [CrossRef]
  35. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011). [CrossRef]
  36. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, New York, 2007).
  37. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004). [CrossRef]
  38. P. Yeh, Optical Waves in Layered Media, 1st ed. (Wiley-InterScience, College Station, Texas, 1998).
  39. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009). [CrossRef] [PubMed]
  40. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010). [CrossRef]
  41. G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011). [CrossRef]
  42. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012). [CrossRef]
  43. W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2,” J. Appl. Phys.107, 013101 (2010). [CrossRef]
  44. FDTD Solutions, from Lumerical Solutions Inc., http://www.lumerical.com/ .
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  46. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  47. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited