OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4291–4302

On the resolution and linearity of lensless in situ X-ray beam diagnostics using pixelated sensors

Anton Kachatkou and Roelof van Silfhout  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4291-4302 (2013)
http://dx.doi.org/10.1364/OE.21.004291


View Full Text Article

Enhanced HTML    Acrobat PDF (3208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical model that describes the resolution and linearity of a novel transparent X-ray beam imaging and position measurement method. Using a pinhole or coded aperture camera with pixelated area sensors to image a small fraction of radiation scattered by a thin foil placed at oblique angles with respect to the beam, a very precise measurement of the beam position is made. We show that the resolution of the method is determined by incident beam intensity, beam size, camera parameters, sensor pixel size and noise. The model is verified experimentally showing a sub-micrometer resolution over a large linear range.

© 2013 OSA

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(170.1630) Medical optics and biotechnology : Coded aperture imaging
(290.5820) Scattering : Scattering measurements
(340.6720) X-ray optics : Synchrotron radiation
(340.7440) X-ray optics : X-ray imaging
(350.5730) Other areas of optics : Resolution

ToC Category:
X-ray Optics

History
Original Manuscript: November 23, 2012
Revised Manuscript: January 24, 2013
Manuscript Accepted: February 5, 2013
Published: February 12, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Anton Kachatkou and Roelof van Silfhout, "On the resolution and linearity of lensless in situ X-ray beam diagnostics using pixelated sensors," Opt. Express 21, 4291-4302 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Oed, “Position-sensitive detector with microstrip anode for electron multiplication with gases,” Nucl. Instrum. Meth. A263(2-3), 351–359 (1988). [CrossRef]
  2. P. Ilinski, U. Hahn, H. Schulte-Schrepping, and M. Degenhardt, “Residual gas X-ray beam position monitor development for PETRA III,” AIP Conf. Proc.879, 782–785 (2007). [CrossRef]
  3. E. D. Johnson and T. Oversluizen, “Compact high flux photon beam position monitor,” Rev. Sci. Instrum.60(7), 1947–1950 (1989). [CrossRef]
  4. M. R. Fuchs, K. Holldack, G. Reichardt, and U. Mueller, “Transmissive imaging X-ray beam position monitors (XBPM) for protein crystallography (PX) beamlines,” AIP Conf. Proc.879, 1006–1009 (2007). [CrossRef]
  5. T. Martin, G. Baret, F. Lesimple, and P. P. Jobert, “‘Semi-transparent’ X-ray beam monitor based on nanometric phosphor powder deposited on thin carbon plate,” IEEE Trans. Nucl. Sci.55(3), 1527–1531 (2008). [CrossRef]
  6. R. W. Alkire, G. Rosenbaum, and G. Evans, “Design of a vacuum-compatible high-precision monochromatic beam-position monitor for use with synchrotron radiation from 5 to 25 keV,” J. Synchrotron Radiat.7(2), 61–68 (2000). [CrossRef] [PubMed]
  7. R. van Silfhout, A. Kachatkou, N. Kyele, P. Scott, T. Martin, and S. Nikitenko, “High-resolution transparent x-ray beam location and imaging,” Opt. Lett.36(4), 570–572 (2011). [CrossRef] [PubMed]
  8. N. R. Kyele and R. G. van Silfhout, “Beam Sensing,” UK Patent GB2463448 (24 July 2012).
  9. P. Revesz, A. B. Temnykh, and A. K. Pauling, “New X-ray scattering-based beam position monitor for high power synchrotron radiation,” Nucl. Instrum. Meth. A621(1-3), 656–661 (2010). [CrossRef]
  10. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  11. Y. Feng, J. Goree, and B. Liu, “Accurate particle position measurement from images,” Rev. Sci. Instrum.78(5), 053704–053710 (2007). [CrossRef] [PubMed]
  12. Q. Tian and M. N. Huhns, “Algorithms for subpixel registration,” Comput. Vision Graph.35(2), 220–233 (1986). [CrossRef]
  13. M. R. Shortis, T. A. Clarke, and T. Short, “Comparison of some techniques for the subpixel location of discrete target images,” Proc. SPIE 2350, VideometricsIII, 239–250 (1994). [CrossRef]
  14. P. F. I. Scott, A. S. Kachatkou, N. R. Kyele, and R. G. van Silfhout, “Real-time photon beam localization methods using high-resolution imagers and parallel processing using a reconfigurable system,” Opt. Eng.48(7), 073601–073614 (2009). [CrossRef]
  15. N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum.57(6), 1152–1157 (1986). [CrossRef]
  16. M. Lampton, B. Margon, and S. Bowyer, “Parameter-estimation in X-ray astronomy,” Astrophys. J.208, 177–190 (1976). [CrossRef]
  17. F. Zontone, A. Madsen, O. Konovalov, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Measuring the source brilliance at an undulator beamline,” AIP Conf. Proc.1234, 603–606 (2010). [CrossRef]
  18. N. M. Allinson, “Development of Non-intensified charge-coupled device area X-ray detectors,” J. Synchrotron Radiat.1(1), 54–62 (1994). [CrossRef] [PubMed]
  19. J. R. Janesick, Photon Transfer: DN->λ (SPIE Press, Bellingham, Washington, 2007), Chap. 4.
  20. F. Zontone, European Synchrotron Radiat Facility, BP 220, F-38043 Grenoble, France (personal communication, 2012). Kapton scattering cross section coefficients: a0 = 6.21567 × 10−7, a1 = −9.62581 × 10−8, a2 = 7.86926 × 10−9, a3 = −2.85194 × 10−10, a4 = 3.78401 × 10−12, b0 = −6.33669 × 10−8, c0 = 0.629331, d0 = 3.25478, k0 = 0.110262, l0 = 2.72988, b1 = 7.8529 × 10−9, c1 = 1.07227, d1 = −294.699, k1 = 0.0543647, l1 = 18.5207, C = 21175.44.
  21. B. Lengeler, C. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat.6(6), 1153–1167 (1999). [CrossRef]
  22. K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, R. D. Walton, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “A test beamline on diamond light source,” AIP Conf. Proc.1234, 387–390 (2010). [CrossRef]
  23. R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, and W. Wong, “Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance,” Nucl. Instrum. Meth. A633(Supplement 1), S15–S18 (2011). [CrossRef]
  24. R. Dinapoli, A. Bergamaschi, B. Henrich, R. Horisberger, I. Johnson, A. Mozzanica, E. Schmid, B. Schmitt, A. Schreiber, X. Shi, and G. Theidel, “EIGER: Next generation single photon counting detector for X-ray applications,” Nucl. Instrum. Meth. A650(1), 79–83 (2011). [CrossRef]
  25. E. E. Fenimore, “Coded aperture imaging: predicted performance of uniformly redundant arrays,” Appl. Opt.17(22), 3562–3570 (1978). [CrossRef] [PubMed]
  26. K. A. Nugent and B. Luther-Davies, “The use of a regular array of apertures in penumbral imaging,” Opt. Commun.52(4), 287–291 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited