OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4411–4423

Inexpensive photonic crystal spectrometer for colorimetric sensing applications

Kurt M. Bryan, Zhang Jia, Nadia K. Pervez, Marshall P. Cox, Michael J. Gazes, and Ioannis Kymissis  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4411-4423 (2013)
http://dx.doi.org/10.1364/OE.21.004411


View Full Text Article

Enhanced HTML    Acrobat PDF (1653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystal spectrometers possess significant size and cost advantages over traditional grating-based spectrometers. In a previous work [Pervez, et al, Opt. Express 18, 8277 (2010)] we demonstrated a proof of this concept by implementing a 9-element array photonic crystal spectrometer with a resolution of 20nm. Here we demonstrate a photonic crystal spectrometer with improved performance. The dependence of the spectral recovery resolution on the number of photonic crystal arrays and the width of the response function from each photonic crystal is investigated. A mathematical treatment, regularization based on known information of the spectrum, is utilized in order to stabilize the spectral estimation inverse problem and achieve improved spectral recovery. Colorimetry applications, the measurement of CIE 1931 chromaticities and the color rendering index, are demonstrated with the improved spectrometer.

© 2013 OSA

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(130.6010) Integrated optics : Sensors
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1730) Vision, color, and visual optics : Colorimetry
(130.5296) Integrated optics : Photonic crystal waveguides
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 1, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: February 3, 2013
Published: February 13, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Kurt M. Bryan, Zhang Jia, Nadia K. Pervez, Marshall P. Cox, Michael J. Gazes, and Ioannis Kymissis, "Inexpensive photonic crystal spectrometer for colorimetric sensing applications," Opt. Express 21, 4411-4423 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4411


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kipphan, Handbook of Print Media: Technologies and Production Methods (Springer, 2001).
  2. P. G. Herzog and F. Koenig, “Spectral scanner in the quality control of fabrics manufacturing,” Proc. SPIE4300, 25–32 (2000). [CrossRef]
  3. G. Celikiz and R. G. Kuehni, Color Technology in the Textile Industry (American Association of Textile Chemists and Colorists: 1983).
  4. W. M. Johnston, “Color measurement in dentistry,” J. Dent.37, e2–e6 (2009). [CrossRef] [PubMed]
  5. S. Ahuja and S. Scypinski, Handbook of Modern Pharmaceutical Analysis (Academic, 2010).
  6. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng.41, 2532–2548 (2002). [CrossRef]
  7. S. Gaurav, Digital Color Imaging Handbook (CRC, 2003).
  8. S. S. Murtaza and J. C. Campbell, “Effects of variations in layer thickness on the reflectivity spectra of semiconductor Bragg mirrors,” J. Appl. Phys.77, 3641–3644 (1995). [CrossRef]
  9. O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express15, 9701–9706 (2007). [CrossRef] [PubMed]
  10. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282, 3168–3171 (2009). [CrossRef]
  11. B. Momeni, E. S. Hosseini, and A. Adibi, “Planar photonic crystal microspectrometers in silicon-nitride for the visible range,” Opt. Express17, 17060–17069 (2009). [CrossRef] [PubMed]
  12. U. Kurokawa, B. I. Choi, and C-. C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sensors J.11, 1556–1563 (2011) [CrossRef]
  13. S. H. Kim, H. S. Park, J. H. Choi, J. W. Shim, and S. M. Yang, “Integration of colloidal photonic crystals toward miniaturized spectrometers,” Adv. Mater.22, 946–950 (2010). [CrossRef] [PubMed]
  14. N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express18, 8277–8285 (2010). [CrossRef] [PubMed]
  15. G. Wyszecki and W. S. Stiles, Color Science, 2nd Ed. (Wiley, 1982).
  16. P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms (Society for Industrial and Applied Mathematics, 2010). [CrossRef]
  17. J. C. Santamarina and D. Fratta, Discrete Signals and Inverse Problems (Wiley, 2005). [CrossRef]
  18. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Ed. (Johns Hopkins University,1996)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited