OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4475–4480

Broadband frequency tripling in locally ordered nonlinear photonic crystal

Yan Sheng and Wieslaw Krolikowski  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4475-4480 (2013)
http://dx.doi.org/10.1364/OE.21.004475


View Full Text Article

Enhanced HTML    Acrobat PDF (1674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and fabricate a LiNbO3-based nonlinear photonic crystal with locally ordered ferroelectric domains. The nonlinearity modulation provides sets of uniformly distributed reciprocal lattice vectors, ensuring broadband high frequency conversion efficiency. Frequency tripling via cascading is demonstrated in the range of 1400–1830 nm, with energy conversion efficiency up to ∼15%.

© 2013 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7220) Nonlinear optics : Upconversion
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 3, 2012
Revised Manuscript: January 9, 2013
Manuscript Accepted: January 29, 2013
Published: February 13, 2013

Citation
Yan Sheng and Wieslaw Krolikowski, "Broadband frequency tripling in locally ordered nonlinear photonic crystal," Opt. Express 21, 4475-4480 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Mimoun, L. D. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express17, 18684–18691 (2008). [CrossRef]
  2. S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011). [CrossRef]
  3. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011). [CrossRef]
  4. S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmoinc generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997). [CrossRef]
  5. N. G. B. Broderick, R. T. Bratfalean, T. M. Montro, and D. J. Richardson, “Temperature and wavelength tuning of second-, third-, and fourth-hamonic generation in a two-dimensional hexagonally poled nonlinear crystal,” J. Opt. Soc. Am. B19, 2263–2272 (2002). [CrossRef]
  6. J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962). [CrossRef]
  7. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE. J. Quantum Electron.28, 2631–2654 (1992). [CrossRef]
  8. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81, 4136–4139 (1998). [CrossRef]
  9. N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000). [CrossRef] [PubMed]
  10. R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett.30, 424–426 (2005). [CrossRef] [PubMed]
  11. A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev.4, 355–373 (2010). [CrossRef]
  12. M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004). [CrossRef]
  13. M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in SrxBa1−xNb2O6 by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett.62, 2619–2621 (1993). [CrossRef]
  14. Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011). [CrossRef]
  15. I. Varon, G. Porat, and A. Arie, “Controlling the disorder properties of quadratic nonlinear photonic crystals,” Opt. Lett.36, 3978–3980 (2011). [CrossRef] [PubMed]
  16. Y. Sheng, S. M. Saltiel, and K. Koynov, “Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal,” Opt. Lett.34, 656–658 (2009). [CrossRef] [PubMed]
  17. W. Wang, V. Roppo, K. Kalinowski, Y. Kong, D. N. Neshev, C. Cojocaru, J. Trull, R. Vilaseca, K. Staliunas, W. Krolikowski, S. M. Saltiel, and Yu. S. Kivshar, “Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media,” Opt. Express17, 20117–20123 (2009). [CrossRef] [PubMed]
  18. Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006). [CrossRef]
  19. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron.16, 373–375 (1984). [CrossRef]
  20. A. M. Weiner, Ultrafast Optics (John Wiley & Sons, 2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited