OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4567–4577

Improving performance of optical phase conjugation by splitting the nonlinear element

Monir Morshed, Arthur J. Lowery, and Liang B. Du  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4567-4577 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1512 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that optical phase conjugation (OPC) based on third order nonlinear effects for mid-span spectral inversion (MSSI) can be improved by splitting the nonlinear element into two parts and adding an optical filter between them. This band-stop filter suppresses the cross-phase-modulation products that are generated around the pump, which, if not removed, will be shifted to fall around the output OPC signal band. Numerical simulations show that this method reduces the fundamental limitations introduced by OPC by 3 dB, which results in improvement of the maximum signal quality, Qmax, by 1 dB in a 10 × 80-km 4-QAM 224-Gb/s CO-OFDM system with MSSI.

© 2013 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.5040) Fourier optics and signal processing : Phase conjugation
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: November 29, 2012
Revised Manuscript: January 31, 2013
Manuscript Accepted: January 31, 2013
Published: February 14, 2013

Monir Morshed, Arthur J. Lowery, and Liang B. Du, "Improving performance of optical phase conjugation by splitting the nonlinear element," Opt. Express 21, 4567-4577 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express14(6), 2079–2084 (2006). [CrossRef] [PubMed]
  2. W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express15(16), 9936–9947 (2007). [CrossRef] [PubMed]
  3. L. B. Du and A. J. Lowery, “Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems,” Opt. Lett.36, 3 (2011).
  4. L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett.22, 320–322 (2009).
  5. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28(4), 423–433 (2010). [CrossRef]
  6. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001). [CrossRef] [PubMed]
  7. S. Watanabe, “Cancellation of four-wave mixing in a single-mode fiber by midway optical phase conjugation,” Opt. Lett.19(17), 1308–1310 (1994). [CrossRef] [PubMed]
  8. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006). [CrossRef]
  9. S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004). [CrossRef]
  10. L. Marazzi, P. Parolari, P. Martelli, R. Siano, P. Boffi, M. Ferrario, A. Righetti, M. Martinelli, V. Pusino, P. Minzioni, I. Cristiani, V. Degiorgio, C. Langrock, and M. M. Fejer, “Real-Time 100-Gb/s POLMUX RZ-DQPSK Transmission over Uncompensated 500 km of SSMF by Optical Phase Conjugation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2009), paper JWA44.
  11. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express17(20), 17758–17763 (2009). [CrossRef] [PubMed]
  12. X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010). [CrossRef]
  13. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008). [CrossRef]
  14. L. B. Du, M. M. Morshed, and A. J. Lowery, “Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation,” Opt. Express20(18), 19921–19927 (2012). [CrossRef] [PubMed]
  15. M. Morshed, L. B. Du, and A. J. Lowery, “Performance Limitation of Coherent Optical OFDM Systems with non-ideal Optical Phase Conjugation,” in IEEE Photonics Conference TuU4, pp. 394-395, 23-27 Sept. 2012.
  16. M. Morshed, L. B. Du, and A. J. Lowery, “Mid-Span Spectral Inversion for Coherent Optical OFDM Systems: Fundamental Limits to Performance,” J. Lightwave Technol.31(1), 58–66 (2013). [CrossRef]
  17. B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012). [CrossRef]
  18. M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010). [CrossRef] [PubMed]
  19. P. Minzioni, F. Alberti, and A. Schiffini, “Techniques for nonlinearity cancellation into embedded links by optical phase conjugation,” J. Lightwave Technol.23(8), 2364–2370 (2005). [CrossRef]
  20. A. Chowdhury, G. Raybon, R. J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol.23(1), 172–177 (2005). [CrossRef]
  21. S. L. Jansen, D. van den Borne, C. Climent, M. Serbay, C. J. Weiske, H. Suche, P. M. Krummrich, S. Spalter, S. Calabro, N. Hecker-Denschlag, P. Leisching, W. Rosenkranz, W. Sohler, G. D. Khoe, T. Koonen, and H. de Waardt, “10,200 km 22×2×10 Gbit/s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation,” Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, 6, PDP 28, 6-11 March 2005.
  22. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul Phase-Shift-Keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006). [CrossRef]
  23. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, H. Suche, W. Sohler, G. D. Khoe, H. de Waardt, I. Morita, and H. Tanaka, “Applications of optical phase conjugation in robust optical transmission systems,” in Proc. SPIE 6783 Optical Transmission, Switching, and Subsystems V, 67830P (November 19, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited