OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4591–4597

Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation

Tino Elsmann, Tobias Habisreuther, Albrecht Graf, Manfred Rothhardt, and Hartmut Bartelt  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4591-4597 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The paper describes the implementation of fiber Bragg gratings inscribed by femtosecond laser pulses with a wavelength of 400 nm. The use of a Talbot interferometer for the inscription process makes multiplexing practicable. We demonstrate the functionality of a three-grating multiplexing sensor and the temperature stability up to 1200 °C for a single first-order Bragg grating.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1480) Optical devices : Bragg reflectors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 5, 2012
Revised Manuscript: January 18, 2013
Manuscript Accepted: February 5, 2013
Published: February 14, 2013

Tino Elsmann, Tobias Habisreuther, Albrecht Graf, Manfred Rothhardt, and Hartmut Bartelt, "Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation," Opt. Express 21, 4591-4597 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett.33(16), 1917–1919 (2008). [CrossRef] [PubMed]
  2. E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express17(15), 12523–12531 (2009). [CrossRef] [PubMed]
  3. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express17(22), 19785–19790 (2009). [CrossRef] [PubMed]
  4. D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications,” IEEE Photon. Technol. Lett.16(11), 2505–2507 (2004). [CrossRef]
  5. M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol.20(11), 115301 (2009). [CrossRef]
  6. T. Elsmann, E. Lindner, M. Becker, W. Ecke, M. Rothhardt, and H. Bartelt, “Erzeugung von Faser-Bragg-Gittern (FBGs) in Saphirfasern für die Hochtemperatursensorik,” in DGaO-proceeding, A28, (2011).
  7. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett.35(16), 2810–2812 (2010). [CrossRef] [PubMed]
  8. J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011). [CrossRef]
  9. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997). [CrossRef]
  10. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993). [CrossRef]
  11. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993). [CrossRef]
  12. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008). [CrossRef] [PubMed]
  13. V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum.65(12), 3860–3861 (1994). [CrossRef]
  14. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt.36(24), 5934–5940 (1997). [CrossRef] [PubMed]
  15. www.ibsen.dk/im
  16. W. J. Tropf, M. E. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995), Vol. 2, Chap. 33.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited