OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4709–4716

Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors

Zahyun Ku, Woo-Yong Jang, Jiangfeng Zhou, Jun Oh Kim, Ajit V. Barve, Sinhara Silva, Sanjay Krishna, S. R. J. Brueck, Robert Nelson, Augustine Urbas, Sangwoo Kang, and Sang Jun Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4709-4716 (2013)
http://dx.doi.org/10.1364/OE.21.004709


View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper is focused on analyzing the impact of a two-dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2D-Au-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show that the performance of the DWELL focal plane array (FPA) is improved by enhancing the coupling to active layer via local field engineering resulting from a surface plasmon polariton mode and a guided Fabry-Perot mode. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors. Experimental results demonstrate the enhanced signal-to-noise ratio by the 2D-Au-CHA integrated FPA as compared to the DWELL FPA. A comparison between the experiment and the simulation shows a good agreement.

© 2013 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.2790) Integrated optics : Guided waves
(230.5160) Optical devices : Photodetectors
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Detectors

History
Original Manuscript: November 26, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: February 11, 2013
Published: February 19, 2013

Citation
Zahyun Ku, Woo-Yong Jang, Jiangfeng Zhou, Jun Oh Kim, Ajit V. Barve, Sinhara Silva, Sanjay Krishna, S. R. J. Brueck, Robert Nelson, Augustine Urbas, Sangwoo Kang, and Sang Jun Lee, "Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors," Opt. Express 21, 4709-4716 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4709


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol.11(5), 759–765 (1996). [CrossRef]
  2. S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007). [CrossRef]
  3. P. Boucaud and S. Sauvage, “Infrared photodetection with semiconductor self-assembled quantum dots,” C. R. Phys.4(10), 1133–1154 (2003). [CrossRef]
  4. G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000). [CrossRef]
  5. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009). [CrossRef]
  6. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  7. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength Gratings,” Appl. Phys. Lett.90(19), 191102 (2007). [CrossRef]
  8. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010). [CrossRef] [PubMed]
  9. S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett.100(1), 011110 (2012). [CrossRef]
  10. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009). [CrossRef]
  11. S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011). [CrossRef] [PubMed]
  12. www.cst.com
  13. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  14. I. N. Stranski and L. Krastanow, “Sitzungsberichte d. Akad. D. Wissenschaften in Wien,” Abt. IIb, Band146, 797–810 (1937).
  15. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. (Deerfield Beach Fla.)23(2), 147–179 (2011). [CrossRef] [PubMed]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  17. I. Brener, (personal communication).
  18. W. G. Spitzer and J. M. Whelan, “Infrared Absorption and Electron Effective Mass in n-Type Gallium Arsenide,” Phys. Rev.114(1), 59–63 (1959). [CrossRef]
  19. A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010). [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 3rd Edition, 1999).
  21. J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013). [CrossRef]
  22. E. L. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley, 1996).
  23. T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008). [CrossRef]
  24. J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited