OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4717–4727

Infrared cascade and cooperative multicolor upconversion emissions in Y8V2O17:Eu:Yb nanophosphors

Y. Dwivedi and S. C. Zilio  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4717-4727 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work reports on the efficient cooperative upconversion and infrared cascade downconversion emissions in a novel Y8V2O17:Eu:Yb nanophosphor. The excitation with UV light produces emission in the 950-1000 nm region, corresponding to the Yb3+:2F5/22F7/2 transition, as well as visible emissions of the Eu3+ ion. Time-resolved spectroscopy measurements revealed that the mechanism responsible for this transition is the efficient cascade nonresonant energy transfer from VO43-→Eu→Yb. When the same nanophosphor is excited with 976 nm radiation, bright reddish upconversion emission of the Eu3+:5DJ7FJ transition is observed as consequence of the Yb + Yb→Eu cooperative energy transfer mechanism, which was established by analyzing the emission power dependence and the time-resolved spectroscopy of radiative transitions.

© 2013 OSA

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

Original Manuscript: December 5, 2012
Revised Manuscript: February 7, 2013
Manuscript Accepted: February 10, 2013
Published: February 19, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Y. Dwivedi and S. C. Zilio, "Infrared cascade and cooperative multicolor upconversion emissions in Y8V2O17:Eu:Yb nanophosphors," Opt. Express 21, 4717-4727 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004). [CrossRef] [PubMed]
  2. J.-C. G. Bunzil and G. R. Choppin, eds., Lanthanide probes in life, chemical and earth sciences: theory and practice (Elsevier, Amsterdam, 1989).
  3. Y. Dwivedi, A. Bahadur, and S. B. Rai, “Optical avalanche in Ho:Yb:Gd2O3 nanocrystals,” J. Appl. Phys. 110(4), 043103 (2011), doi:. [CrossRef]
  4. J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:. [CrossRef]
  5. T. Jüstel, H. Nikol, and C. Ronda, “New development in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998). [CrossRef]
  6. H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006). [CrossRef]
  7. L. Thorington, “Temperature dependence of the emission of an improved manganese-activated magnesium germanate phosphor,” J. Opt. Soc. Am. 40(9), 579–583 (1950). [CrossRef]
  8. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970). [CrossRef]
  9. C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007). [CrossRef] [PubMed]
  10. Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7nanocrystals,” Opt. Mater. 32(9), 913–919 (2010). [CrossRef]
  11. L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999). [CrossRef]
  12. X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006). [CrossRef] [PubMed]
  13. H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978). [CrossRef]
  14. R. Kubo, “Electronic properties of metallic fine particles,” Int. J. Phys. Soc. Jpn. 17(6), 975–986 (1962). [CrossRef]
  15. L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986). [CrossRef]
  16. R. Singh and S. J. Dhoble, “Combustion synthesis of Eu2+ and Dy3+ activated Sr3(VO4)2 phosphor for LEDs,” Bull. Mater. Sci. 34(3), 557–552 (2011). [CrossRef]
  17. H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978). [CrossRef]
  18. A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002). [CrossRef]
  19. X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012). [CrossRef]
  20. Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010). [CrossRef] [PubMed]
  21. B. Henderson and G. F. Imbusch, Optical Spectroscopy Of Inorganic Solids (Oxford University Press, 2006).
  22. S. S. Saleem and T. K. K. Srinivasan, “Hypersensitive and forbidden transitions of trivalent europium ion in Tb1.8Eu0.2(MoO4)3 single crystal” Pramana-,” J. Phys. 29, 87–92 (1987).
  23. R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973). [CrossRef]
  24. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962). [CrossRef]
  25. G. S. Ofelt, “Intensities of crystal spectra of rare?earth ion,” J. Chem. Phys. 37(3), 511–520 (1962). [CrossRef]
  26. C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101(1-2), 11–21 (2003). [CrossRef]
  27. X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012). [CrossRef]
  28. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968). [CrossRef]
  29. N. S. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972). [CrossRef]
  30. V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007). [CrossRef]
  31. A. I. Burshtein, “Energy transfer kinetics in disordered systems,” J. Lumin. 34(4), 167–188 (1985). [CrossRef]
  32. W. L. Wanmaker, A. Bril, J. W. Vrugt, and J. Broos, “Luminescent properties of Eu-activated phosphors of the type AIIIBnOn,” Philips Res. Rep. 21, 270–282 (1966).
  33. Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).
  34. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003). [CrossRef]
  35. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited