OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4889–4895

Optical repetition rate stabilization of a mode-locked all-fiber laser

Steffen Rieger, Tim Hellwig, Till Walbaum, and Carsten Fallnich  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4889-4895 (2013)
http://dx.doi.org/10.1364/OE.21.004889


View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We designed an all-fiber mode-locked Erbium laser with optically stabilized repetition rate of 31.4 MHz. The stabilization was achieved by changing the refractive index of an Ytterbium-doped fiber in the resonator via optical pumping at a wavelength of 978 nm; and for long-term stability the local temperature of the fiber was additionally controlled with a thermo-electric element. The repetition rate was stabilized over 12 hours, and an Allan deviation of 2.5 × 10−12 for an averaging time of 1 s could be achieved.

© 2013 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.1150) Optical devices : All-optical devices
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 6, 2012
Revised Manuscript: January 11, 2013
Manuscript Accepted: January 11, 2013
Published: February 20, 2013

Citation
Steffen Rieger, Tim Hellwig, Till Walbaum, and Carsten Fallnich, "Optical repetition rate stabilization of a mode-locked all-fiber laser," Opt. Express 21, 4889-4895 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008). [CrossRef]
  2. C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B103, 795–800 (2011). [CrossRef]
  3. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Ostermann, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express20, 6631–6643 (2012). [CrossRef] [PubMed]
  4. H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74, 1–6 (2002). [CrossRef]
  5. W. Zhang, H. Han, Y. Zhao, Q. Du, and Z. Wei, “A 350MHz Ti:sapphire laser comb based on monolithic scheme and absolute frequency measurement of 729nm laser,” Opt. Express17, 6059–6067 (2009). [CrossRef] [PubMed]
  6. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express12, 5872–5880 (2004). [CrossRef] [PubMed]
  7. J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber laser,” Opt. Lett.35, 3522–3524 (2010). [CrossRef] [PubMed]
  8. D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19, 18440–18451 (2011). [CrossRef] [PubMed]
  9. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78, 321–324 (2004). [CrossRef]
  10. H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express12, 770–775 (2004). [CrossRef] [PubMed]
  11. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, and M. F. Yan, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett.29, 250–252 (2004). [CrossRef] [PubMed]
  12. J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Control of the frequency comb from a mode-locked Erbium-doped fiber laser,” Opt. Express10, 1404–1410 (2002). [CrossRef] [PubMed]
  13. T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011). [CrossRef]
  14. R. de L. Kronig, “On the theory of dispersion of X-rays,” J. Opt. Soc. Am.12, 547–557 (1926). [CrossRef]
  15. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “All-fiber phase actuator based on an erbium-doped fiber amplifier for coherent beam combining at 1064 nm,” Opt. Lett.36, 448–450 (2011). [CrossRef] [PubMed]
  16. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review,” Opt. Fiber Technol.3, 44–64 (1997). [CrossRef]
  17. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and Theoretical Analysis of the Resonant Nonlinearity in Ytterbium-Doped Fiber,” J. Lightwave Technol.16, 798–806 (1998). [CrossRef]
  18. S. C. Fleming and T. J. Whitley, “Measurement and Analysis of Pump-Dependent Refractive Index and Dispersion Effects in Erbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.32, 1113–1121 (1996). [CrossRef]
  19. A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express16, 12658–12663 (2008). [CrossRef] [PubMed]
  20. A. A. Fotiadi, N. Zakharov, O. L. Antipov, and P. Mégret, “All-fiber coherent combining of Er-doped amplifiers through refractive index control in Yb-doped fibers,” Opt. Lett.34, 3574–3576 (2009). [CrossRef] [PubMed]
  21. S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).
  22. Corning SMF-28e+ Optical Fiber Product Information (2006).
  23. K. R. Tamura, Additive Pulse Mode-Locked Erbium-Doped Fiber Lasers, PhD. thesis (Massachusetts Institute of Technology, 1994), http://hdl.handle.net/1721.1/11851 .
  24. R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications, 6th ed. (McGraw-Hill, 2007).
  25. IEEE-SA Standards Board, “IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology – Random Instabilities,” IEEE Std1139–2008.
  26. D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE54, 221–230 (1966). [CrossRef]
  27. K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001). [CrossRef]
  28. C. Ye, J. J. Montiel, i Ponsoda, A. Tervonen, and S. Honkanen, “Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching,” Appl. Opt.49, 5799–5805 (2010). [CrossRef] [PubMed]
  29. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett.34, 1285–1287 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited