OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4979–4985

Optical coupling and emission of metal-insulator confined circular resonators

Kai-Jun Che, Mei-Xin Lei, and Zhi-Ping Cai  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4979-4985 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1651 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the direct and indirect optical interactions of pair circular resonators laterally confined by metal-insulator waveguide. The direct optical interaction shows the split of quality (Q) factors of bonding and antibonding states only happens for thick insulator. The indirect optical interaction through a waveguide is proposed to control the modes resonance and collect the output emissions. The Q factors of resonant modes versus the coupling distance (width of waveguide) are studied. The results show whispering gallery modes(WGMs) engaged into interaction are strongly coupled with the guided waves of waveguide once its width is close to the cut-off width of guided waves, while the coupled mode of two WGMs is not limited by this condition. High Q factor mode, combined with a robust wide emission waveguide(close to the cut-off width of second-order guided waves), can be realized from the bonding states of WGM and coupled WGM with an added wave envelope in waveguide. In addition to the pair resonators, the studies on four resonators interacted with each other through waveguide are also addressed and wide waveguide output is anticipated.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 31, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 21, 2013
Published: February 21, 2013

Kai-Jun Che, Mei-Xin Lei, and Zhi-Ping Cai, "Optical coupling and emission of metal-insulator confined circular resonators," Opt. Express 21, 4979-4985 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.3, 289–291 (1992). [CrossRef]
  2. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, and S. T. Ho, “Waveguide-coupled Al-GaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett.22, 1244–1246 (1997). [CrossRef] [PubMed]
  3. L. Xiao, S. Trebaol, Y. Dumeige, Z. P. Cai, M. Mortier, and P. Féron, “Miniaturized optical microwave source using a dual-wavelength whispering gallery mode laser,” IEEE Photonics Technol. Lett.22, 559–561 (2010). [CrossRef]
  4. S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Quantum Electron.12, 71–77 (2006). [CrossRef]
  5. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett.31, 338–340 (2006). [CrossRef] [PubMed]
  6. J. J. Li, J. X. Wang, and Y. Z. Huang, “Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks,” Opt. Lett.22, 1563–1565 (2007). [CrossRef]
  7. M. Benyoucef, J. B. Shim, J. Wiersig, and O. G. Schmidt, “Quality-factor enhancement of supermodes in coupled microdisks,” Opt. Lett.36, 1317–1319 (2011).
  8. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express.15, 8191–8196 (2007). [CrossRef] [PubMed]
  9. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaître, and I. Sagnes, “Ultrabright source of entangled photon pairs,” Nat. Lett.466, 217–220 (2010). [CrossRef]
  10. K. Sebald, M. Seyfried, S. Klembt, and C. Kruse, “Optical properties of photonic molecules and elliptical pillars made of ZnSe-based microcavities,” Opt. Express.19, 19422–19429 (2011). [CrossRef] [PubMed]
  11. A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett.88, 111111 (2006). [CrossRef]
  12. L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Optical coupling of fundamental whispering-gallery modes in bispheres,” Phys. Rev. A77, 051801 (2008). [CrossRef]
  13. J. W. Ryu, S. Y. Lee, C. M. Kim, and Y. J. Park, “Directional interacting whispering-gallery modes in coupled dielectric microdisks,” Phys. Rev. A74, 013804 (2006). [CrossRef]
  14. X. Li, R. C. Myers, F. M. Mendoza, D. D. Awschalom, and N. Samarth, “Polarized emission from twin microdisk photonic molecules,” IEEE J. Quantum Electron.45, 932–936 (2009). [CrossRef]
  15. S. J. Wang, Y. D. Yang, and Y. Z. Huang, “Analysis of coupled microcircular resonators coupled to a bus waveguide with high output efficiency,” Opt. Lett.35, 1953–955 (2010). [CrossRef] [PubMed]
  16. S. V. Boriskina and L. D. Negro, “Self-referenced photonic molecule bio(chemical)sensor,” Opt. Lett.35, 2496–2498 (2010). [CrossRef] [PubMed]
  17. J. W. Ryu, J. H. Cho, C. M. Kim, S. Shinohara, and S. W. Kim, “Terahertz beat frequency generation from two-mode lasing operation of coupled microdisk laser,” Opt. Lett.37, 3210–3212 (2012). [CrossRef] [PubMed]
  18. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Ntzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics.1, 589–594 (2007). [CrossRef]
  19. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics.4, 395–399 (2010). [CrossRef]
  20. K. J. Che, Q. F. Yao, Y. Z. Huang, Z. P. Cai, Y. D. Yang, and Y. Du, “Multiple-port InP/InGaAsP square-resonator microlasers,” IEEE J. Sel. Quantum Electron.17, 1656–1661 (2011). [CrossRef]
  21. K. J. Che and Y. Z. Huang, “Output characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys.107, 113103 (2010). [CrossRef]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared,” Appl. Opt.22, 1099–1120 (1983). [CrossRef] [PubMed]
  23. A. Taflove and S. C. Hagness, Computational electrodynamics-The finite-difference time-domain method, 3rd ed.Norwood, MA: Artech House, 2005.
  24. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pad approximation,” IEEE Microw. Wireless Compon. Lett.11, 223–225 (2001). [CrossRef]
  25. Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express.25, 23010–23015 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited