OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4995–5004

Parametric gain in dispersion engineered photonic crystal waveguides

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, I. Cestier, and G. Eisenstein  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4995-5004 (2013)
http://dx.doi.org/10.1364/OE.21.004995


View Full Text Article

Enhanced HTML    Acrobat PDF (6040 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical simulation of parametric gain properties in GaInP PhC dispersion engineered waveguides in which the group velocity dispersion crosses zero twice and where the pump and the signal are 100ps pulses. The simulations use the M-SSFT algorithm which incorporates dispersive nonlinear coefficients and losses. We concentrate on narrow band parametric gain which occurs for pump wavelengths in the normal group velocity dispersion regime. The effects of structural details, of pump wavelength and of losses are carefully analyzed.

© 2013 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 28, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 16, 2013
Published: February 21, 2013

Citation
A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, I. Cestier, and G. Eisenstein, "Parametric gain in dispersion engineered photonic crystal waveguides," Opt. Express 21, 4995-5004 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Li, T. P. O’Faolain, L. Gomez-Iglesias, A. Krauss, and T. F, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008). [CrossRef] [PubMed]
  2. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20, 13108–13114 (2012). [CrossRef] [PubMed]
  3. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001). [CrossRef]
  4. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys.40, 2666 (2007). [CrossRef]
  5. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008). [CrossRef]
  6. M. Santagiustina, C. G. Someda, G. Vadala, S. Combrié, and A. D. Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010). [CrossRef] [PubMed]
  7. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19, 4458–4463 (2011). [CrossRef] [PubMed]
  8. I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett.37, 3996–3998 (2012). [CrossRef] [PubMed]
  9. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010). [CrossRef] [PubMed]
  10. I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. D. Rossi, “Time domain switching / demultiplexing using four wave mixing in gainp photonic crystal waveguides,” Opt. Express19, 6093–6099 (2011). [CrossRef] [PubMed]
  11. C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.
  12. S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics J.4, 224–233 (2012). [CrossRef]
  13. I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, and T. F. Krauss, “Scaling of raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B84, 035306 (2011). [CrossRef]
  14. S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett.37, 2919–2921 (2012). [CrossRef] [PubMed]
  15. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003). [CrossRef] [PubMed]
  16. M. Marhic, K.-Y. Wong, and L. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10, 1133–1141 (2004). [CrossRef]
  17. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express13, 6234–6249 (2005). [CrossRef] [PubMed]
  18. A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.
  19. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express14, 8540–8545 (2006). [CrossRef] [PubMed]
  20. A. Willinger, E. Shumakher, and G. Eisenstein, “On the roles of polarization and raman-assisted phase matching in narrowband fiber parametric amplifiers,” J. Lightwave Technol.26, 2260–2268 (2008). [CrossRef]
  21. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).
  22. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15, 2947–2952 (2007). [CrossRef] [PubMed]
  23. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett.35, 3198–3200 (2010). [CrossRef] [PubMed]
  24. O. Sinkin, R. Holzlohner, J. Zweck, and C. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol.21, 61–68 (2003). [CrossRef]
  25. A. Willinger and G. Eisenstein, “Split step fourier transform: A comparison between single and multiple envelope formalisms,” J. Lightwave Technol.30, 2988–2994 (2012). [CrossRef]
  26. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett.103, 063903 (2009). [CrossRef] [PubMed]
  27. M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009). [CrossRef] [PubMed]
  28. G. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 10, 389–444.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited