OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5005–5013

Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector

Nathan R. Gemmell, Aongus McCarthy, Baochang Liu, Michael G. Tanner, Sander D. Dorenbos, Valery Zwiller, Michael S. Patterson, Gerald S. Buller, Brian C. Wilson, and Robert H. Hadfield  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 5005-5013 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Direct monitoring of singlet oxygen (1O2) luminescence is a particularly challenging infrared photodetection problem. 1O2, an excited state of the oxygen molecule, is a crucial intermediate in many biological processes. We employ a low noise superconducting nanowire single-photon detector to record 1O2 luminescence at 1270 nm wavelength from a model photosensitizer (Rose Bengal) in solution. Narrow band spectral filtering and chemical quenching is used to verify the 1O2 signal, and lifetime evolution with the addition of protein is studied. Furthermore, we demonstrate the detection of 1O2 luminescence through a single optical fiber, a marked advance for dose monitoring in clinical treatments such as photodynamic therapy.

© 2013 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.3780) Detectors : Low light level
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(250.5230) Optoelectronics : Photoluminescence
(270.5570) Quantum optics : Quantum detectors
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(350.5130) Other areas of optics : Photochemistry

ToC Category:

Original Manuscript: November 29, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 17, 2013
Published: February 21, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Nathan R. Gemmell, Aongus McCarthy, Baochang Liu, Michael G. Tanner, Sander D. Dorenbos, Valery Zwiller, Michael S. Patterson, Gerald S. Buller, Brian C. Wilson, and Robert H. Hadfield, "Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector," Opt. Express 21, 5005-5013 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann, eds., in Handbook of Biophotonics (Wiley-VCH, 2012)
  2. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  3. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992). [CrossRef] [PubMed]
  4. R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer5(10), 796–806 (2005). [CrossRef] [PubMed]
  5. H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003). [CrossRef] [PubMed]
  6. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002). [CrossRef] [PubMed]
  7. http://jp.hamamatsu.com/products/sensor-etd/pd002/index_en.html
  8. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).
  9. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010). [CrossRef]
  10. C. Schweitzer and R. Schmidt, “Physical mechanisms of generation and deactivation of singlet oxygen,” Chem. Rev.103(5), 1685–1758 (2003). [CrossRef] [PubMed]
  11. P. R. Ogilby, “Singlet oxygen: there is indeed something new under the sun,” Chem. Soc. Rev.39(8), 3181–3209 (2010). [CrossRef] [PubMed]
  12. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003). [CrossRef] [PubMed]
  13. S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004). [CrossRef] [PubMed]
  14. U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol.45(3), 195–214 (2000). [CrossRef] [PubMed]
  15. M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol.75(4), 382–391 (2002). [CrossRef] [PubMed]
  16. M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res.63(22), 7986–7994 (2003). [PubMed]
  17. M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol.81(4), 941–943 (2005). [CrossRef] [PubMed]
  18. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol.82(5), 1198–1210 (2006). [CrossRef] [PubMed]
  19. A. Jiménez-Banzo, X. Ragàs, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci.7(9), 1003–1010 (2008). [CrossRef] [PubMed]
  20. M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011). [CrossRef]
  21. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001). [CrossRef]
  22. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005). [CrossRef] [PubMed]
  23. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006). [CrossRef]
  24. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconductor nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012). [CrossRef]
  25. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009). [CrossRef]
  26. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010). [CrossRef]
  27. M. G. Shim and B. C. Wilson, “Development of an in vivo Raman spectroscopy system for diagnostic applications,” J. Raman Spectrosc.28(2-3), 131–142 (1997). [CrossRef]
  28. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, T. Gerrets, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774.
  29. V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012). [CrossRef]
  30. J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006). [CrossRef] [PubMed]
  31. S. G. Davis and S. Lee, “Singlet oxygen production and dosimetry for photodynamic therapy,” U.S. Patent 0209125A1 (Aug. 16, 2012).
  32. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol.87(1), 223–234 (2011). [CrossRef] [PubMed]
  33. M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express18(2), 1430–1437 (2010). [CrossRef] [PubMed]
  34. T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett.37(14), 2982–2984 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited