OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5099–5106

Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy

Yue Tian, Yue-Kai Huang, Shaoliang Zhang, Paul R. Prucnal, and Ting Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 5099-5106 (2013)
http://dx.doi.org/10.1364/OE.21.005099


View Full Text Article

Enhanced HTML    Acrobat PDF (2621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a hybrid optical/digital phase-sensitive boosting (PSB) technique for long-haul wavelength division multiplexing (WDM) transmission systems. The approach uses four-wave mixing (FWM) to generate a phase-conjugated idler alongside the original signal. At the receiver, the signal and idler are jointly detected, and the phases of the idler symbols are conjugated and summed with the signal symbols to suppress noise and nonlinear phase distortion. The proposed hybrid PSB scheme is independent of modulation format and does not require an optical phase-locked loop to achieve phase matching required by conventional phase-sensitive amplifiers. Our simulation and experimental results of 112-Gb/s dual-polarization quadrature phase-shift-keying (DP-QPSK) transmission confirmed the principle of the PSB scheme, attaining a Q-factor improvement of 2.4 dB over conventional single-channel transmission after 4,800 km of dispersion-managed fiber (DMF) link at the expense of 50% reduction in spectral efficiency and extending the system reach by 60% to 7,680 km.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 9, 2012
Revised Manuscript: January 9, 2013
Manuscript Accepted: January 18, 2013
Published: February 22, 2013

Citation
Yue Tian, Yue-Kai Huang, Shaoliang Zhang, Paul R. Prucnal, and Ting Wang, "Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy," Opt. Express 21, 5099-5106 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-5099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Qian, M. Huang, S. Zhang, P. N. Ji, Y. Shao, F. Yaman, E. Mateo, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Transmission of 115×100G PDM-8QAM-OFDM channels with 4bits/s/Hz spectral efficiency over 10,181km,” in European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.3.
  2. J. Cai, Y. Cai, C. Davidson, A. Lucero, H. Zhang, D. Foursa, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “20 Tbit/s capacity transmission over 6,860 km,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB4.
  3. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol.25(8), 2033–2043 (2007). [CrossRef]
  4. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express17(6), 4815–4823 (2009). [CrossRef] [PubMed]
  5. K. Forozesh, S. L. Jansen, S. Randel, I. Morita, and H. Tanaka, “The influence of the dispersion map in coherent optical OFDM transmission systems,” in Coherent Optical Communications Systems, (IEEE LEOS Summer Topic Meetings, 2008), paper WC2.4.
  6. D. Ogasahara, K. Fukuchi, M. Arikawa, and E. Le Taillandier de Gabory, “Real-time evaluation of optical nonlinear effects on 112Gbps PM-QPSK signal in dispersion managed links,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMR3.
  7. R. I. Killey, “Dispersion and nonlinearity compensation using electronic predistortion techniques” in IEE Seminar on Fibre Communications and Electronic Signal Processing (2005–11310), 0–14–2/6,15 Dec. 2005.
  8. R. J. Essiambre, P. J. Winzer, W. X. Qing, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett.18(17), 1804–1806 (2006). [CrossRef]
  9. K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett.18(2), 403–405 (2006). [CrossRef]
  10. C. Xia and W. Rosenkranz, “Mitigation of optical intrachannel nonlinearity using nonlinear electrical equalization,” in Tech. Digest of European Conference on Optical Communications, 2006, Paper We1.5.3.
  11. C. Xu and X. Liu, “Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett.27(18), 1619–1621 (2002). [CrossRef] [PubMed]
  12. K. P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate nonlinear phase noise,” J. Lightwave Technol.22(3), 779–783 (2004). [CrossRef]
  13. W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express15(16), 9936–9947 (2007). [CrossRef] [PubMed]
  14. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express15(20), 12965–12970 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12965 . [CrossRef] [PubMed]
  15. X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol.27(16), 3632–3640 (2009). [CrossRef]
  16. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008). [CrossRef]
  17. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G.-D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006). [CrossRef]
  18. E. F. Mateo, X. Zhou, and G. Li, “Electronic phase conjugation for nonlinearity compensation in fiber communication systems,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA025.
  19. X. Liu, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, M. Fishteyn, and D. J. DiGiovanni, “Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime,” Opt. Express20(17), 19088–19095 (2012). [CrossRef] [PubMed]
  20. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Anderkson, R. Weerasuriya, S. S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010). [CrossRef]
  21. W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett.36(1), 63–64 (2000). [CrossRef]
  22. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express14(6), 2085–2094 (2006). [CrossRef] [PubMed]
  23. Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics5(7), 430–436 (2011). [CrossRef]
  24. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express13(26), 10483–10493 (2005). [CrossRef] [PubMed]
  25. S. L. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.2.F.1.
  26. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1 km−1,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper PD26.
  27. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-oxide-based nonlinear fiber with a high SBS threshold and its application to four-wave-mixing wavelength conversion using a pure continuous-wave pump,” J. Lightwave Technol.24(1), 22–28 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited