OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5171–5181

Quantum light generation on a silicon chip using waveguides and resonators

Jun Rong Ong and Shayan Mookherjea  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 5171-5181 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Integrated optical devices may replace bulk crystal or fiber based assemblies with a more compact and controllable photon pair and heralded single photon source and generate quantum light at telecommunications wavelengths. Here, we propose that a periodic waveguide consisting of a sequence of optical resonators can outperform conventional waveguides or single resonators and generate more than 1 Giga-pairs per second from a sub-millimeter-long room-temperature silicon device, pumped with only about 10 milliwatts of optical power. Furthermore, the spectral properties of such devices provide novel opportunities for chip-scale quantum light sources.

© 2013 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.0270) Quantum optics : Quantum optics
(230.4555) Optical devices : Coupled resonators

ToC Category:
Quantum Optics

Original Manuscript: December 14, 2012
Revised Manuscript: February 4, 2013
Manuscript Accepted: February 13, 2013
Published: February 22, 2013

Jun Rong Ong and Shayan Mookherjea, "Quantum light generation on a silicon chip using waveguides and resonators," Opt. Express 21, 5171-5181 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009). [CrossRef]
  2. Q. Lin and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett.31, 3140–3142 (2006). [CrossRef] [PubMed]
  3. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006). [CrossRef] [PubMed]
  4. K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express16, 20368–20373 (2008). [CrossRef] [PubMed]
  5. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17, 16558–16570 (2009). [CrossRef] [PubMed]
  6. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter - a new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986). [CrossRef]
  7. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14, 983–985 (2002). [CrossRef]
  8. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012). [CrossRef]
  9. J. Osgood, R. M., N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1, 162–235 (2009). [CrossRef]
  10. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007). [CrossRef] [PubMed]
  11. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007). [CrossRef] [PubMed]
  12. Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A62, 033804 (2000). [CrossRef]
  13. Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys.20, 1221–1233 (2010). [CrossRef]
  14. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-q coupled nanocavities,” Nat. Photonics2, 741–747 (2008). [CrossRef]
  15. M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signalidler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun.282, 3518–3523 (2009). [CrossRef]
  16. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010). [CrossRef] [PubMed]
  17. J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express19, 1470–1483 (2011). [CrossRef] [PubMed]
  18. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A31, 3761–3774 (1985). [CrossRef] [PubMed]
  19. C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83, 061803 (2011). [CrossRef]
  20. J. K. S. Poon and A. Yariv, “Active coupled-resonator optical waveguides. i. gain enhancement and noise,” J. Opt. Soc. Am. B24, 2378–2388 (2007). [CrossRef]
  21. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008). [CrossRef]
  22. J. R. Ong, M. L. Cooper, G. Gupta, W. M. J. Green, S. Assefa, F. Xia, and S. Mookherjea, “Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveguides,” Opt. Lett.36, 2964–2966 (2011). [CrossRef] [PubMed]
  23. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005). [CrossRef] [PubMed]
  24. M. L. Cooper and S. Mookherjea, “Modeling of multiband transmission in long silicon coupled-resonator optical waveguides,” IEEE Photon. Technol. Lett.23, 872–874 (2011). [CrossRef]
  25. H.-C. Liu and A. Yariv, “Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (crows),” Opt. Express19, 17653–17668 (2011). [CrossRef] [PubMed]
  26. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012). [CrossRef]
  27. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett.37, 3807–3809 (2012). [PubMed]
  28. Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).
  29. S. Mookherjea and M. A. Schneider, “Avoiding bandwidth collapse in long chains of coupled optical microresonators,” Opt. Lett.36, 4557–4559 (2011). [CrossRef] [PubMed]
  30. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011). [CrossRef]
  31. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004). [CrossRef] [PubMed]
  32. R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Technol. Lett.24, 1242–1244 (2012). [CrossRef]
  33. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, D. K. Gifford, and S. Mookherjea, “Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides,” Opt. Lett.35, 3030–3032 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited