OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5209–5214

Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation

Farhana Masid, Trisha L. Andrew, and Rajesh Menon  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 5209-5214 (2013)
http://dx.doi.org/10.1364/OE.21.005209


View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Absorbance modulation is an approach that enables the localization of light to deep sub-wavelength dimensions by the use of photochromic materials. In this article, we demonstrate the application of absorbance modulation on a transparent (quartz) substrate, which enables patterning of isolated lines of width 60nm for an exposure wavelength of 325nm. Furthermore, by moving the optical pattern relative to the sample, we demonstrate patterning of closely spaced lines, whose spacing is as small as 119nm.

© 2013 OSA

OCIS Codes
(110.4235) Imaging systems : Nanolithography
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Imaging Systems

History
Original Manuscript: January 17, 2013
Revised Manuscript: February 14, 2013
Manuscript Accepted: February 16, 2013
Published: February 22, 2013

Citation
Farhana Masid, Trisha L. Andrew, and Rajesh Menon, "Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation," Opt. Express 21, 5209-5214 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-5209


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk.Anat. Entwichlungsmech9(1), 413–418 (1873). [CrossRef]
  2. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972). [CrossRef] [PubMed]
  3. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991). [CrossRef] [PubMed]
  4. L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy71(1-4), 341–344 (1998). [CrossRef]
  5. T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005). [CrossRef]
  6. J. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett.76(6), 667 (2000). [CrossRef]
  7. S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  8. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laserwriting optical lithography,” Adv. Mater.22(32), 3578–3582 (2010). [CrossRef] [PubMed]
  9. J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1(8), 1221–1227 (2010). [CrossRef]
  10. L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009). [CrossRef] [PubMed]
  11. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009). [CrossRef] [PubMed]
  12. T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997). [CrossRef]
  13. T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev.4(3), 385–389 (1997). [CrossRef]
  14. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep sub-wavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009). [CrossRef] [PubMed]
  15. H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett.33(24), 2916–2918 (2008). [CrossRef] [PubMed]
  16. H.-Y. Tsai, G. M. Wallraff, and R. Menon, “Spatial-frequency multiplication via absorbance modulation,” Appl. Phys. Lett.91(9), 094103 (2007). [CrossRef]
  17. R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett.98(4), 043905 (2007). [CrossRef] [PubMed]
  18. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A23(9), 2290–2294 (2006). [CrossRef] [PubMed]
  19. R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE96(2), 248–270 (2008). [CrossRef]
  20. S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited