OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5456–5462

170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier

Lei Zhang, Shuzhen Cui, Chi Liu, Jun Zhou, and Yan Feng  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5456-5462 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 170 W all-fiber linearly-polarized single-frequency sing-mode ytterbium amplifier at 1064 nm with an optical efficiency of 80% is demonstrated. 3.9 m long ytterbium-doped polarization maintaining fiber with a core diameter of 10 μm is used as the gain fiber, which guarantees a diffraction-limited output with a measured M2 of 1.02. To suppress the stimulated Brillouin scattering, longitudinally varied strains are applied on the gain fiber according to the signal power evolution and the temperature distribution. 7 times increase of the stimulated Brillouin scattering threshold is achieved.

© 2013 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3510) Lasers and laser optics : Lasers, fiber
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 27, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: February 18, 2013
Published: February 26, 2013

Lei Zhang, Shuzhen Cui, Chi Liu, Jun Zhou, and Yan Feng, "170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier," Opt. Express 21, 5456-5462 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13(3), 546–551 (2007). [CrossRef]
  2. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express15(25), 17044–17050 (2007). [CrossRef] [PubMed]
  3. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009). [CrossRef] [PubMed]
  4. M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” in Lasers and Electro-Optics Society (LEOS), the 20th Annual Meeting of the IEEE, 382–383 (2007).
  5. T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012). [CrossRef]
  6. X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett.9(8), 591–595 (2012). [CrossRef]
  7. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications, 64531F–64531F (2007).
  8. C. Zeringue, C. Vergien, and I. Dajani, “Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition,” Opt. Lett.36(5), 618–620 (2011). [CrossRef] [PubMed]
  9. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol.23(11), 3808–3814 (2005). [CrossRef]
  10. L. Zhang, J. Hu, J. Wang, and Y. Feng, “Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star,” Opt. Lett.37(22), 4796–4798 (2012). [PubMed]
  11. A. Liu, “Stimulated Brillouin scattering in single-frequency fiber amplifiers with delivery fibers,” Opt. Express17(17), 15201–15209 (2009). [CrossRef] [PubMed]
  12. C. Vergien, I. Dajani, and C. Zeringue, “Theoretical analysis of single-frequency Raman fiber amplifier system operating at 1178 nm,” Opt. Express18(25), 26214–26228 (2010). [CrossRef] [PubMed]
  13. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011). [CrossRef] [PubMed]
  14. I. Dajani, C. Vergien, C. Robin, and C. Zeringue, “Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output,” Opt. Express17(26), 24317–24333 (2009). [CrossRef] [PubMed]
  15. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997). [CrossRef]
  16. Corning. Inc., http://www.corning.com/opticalfiber/library/fiber_mechanical_reliability/calculators.aspx .
  17. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited