OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5594–5605

Compensating substrate-induced bianisotropy in optical metamaterials using ultrathin superstrate coatings

Zhi Hao Jiang and Douglas H. Werner  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5594-5605 (2013)
http://dx.doi.org/10.1364/OE.21.005594


View Full Text Article

Enhanced HTML    Acrobat PDF (3348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we propose an efficient approach to compensate for the commonly observed substrate-induced bianisotropy that occurs in on-wafer optical metamaterials at normal incidence. First, the consequence of placing a finite thickness substrate underneath a metamaterial is analyzed, indicating that the induced bianisotropy is a near-field effect. The properties of metamaterials sandwiched between an infinitely thick substrate and a finite-thickness superstrate with different permittivity and thickness values are then investigated. It is demonstrated from full-wave simulations that by adding an ultrathin superstrate with a judicious choice of its thickness and permittivity value, the substrate-induced bianisotropy of the system can be suppressed and even eliminated. In addition to the extracted nonlocal effective medium parameters, the induced electric and magnetic dipole moments calculated from the volumetric microscopic fields are also presented, validating that the magnetoelectric coupling compensation is a real physical phenomenon. This study will benefit future optical metamaterial design and implementation strategies as well as the corresponding fabrication and characterization methodologies.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(160.3918) Materials : Metamaterials
(310.4165) Thin films : Multilayer design

ToC Category:
Metamaterials

History
Original Manuscript: January 7, 2013
Revised Manuscript: January 31, 2013
Manuscript Accepted: February 18, 2013
Published: February 28, 2013

Citation
Zhi Hao Jiang and Douglas H. Werner, "Compensating substrate-induced bianisotropy in optical metamaterials using ultrathin superstrate coatings," Opt. Express 21, 5594-5605 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  2. W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
  4. S. Yun, Z. H. Jiang, Q. Xu, Z. Liu, D. H. Werner, and T. S. Mayer, “Low-loss impedance-matched optical metamaterials with zero-phase delay,” ACS Nano6(5), 4475–4482 (2012). [CrossRef] [PubMed]
  5. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012). [CrossRef] [PubMed]
  6. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011). [CrossRef] [PubMed]
  7. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012). [CrossRef] [PubMed]
  8. D. Ö. Güney, Th. Koschny, and C. M. Soukoulis, “Intra-connected 3D isotropic bulk negative index photonic metamaterial,” Opt. Express18(12), 12348–12353 (2010). [CrossRef] [PubMed]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  10. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006). [CrossRef]
  11. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101(10), 103902 (2008). [CrossRef] [PubMed]
  12. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, M. R. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index materials,” Phys. Rev. Lett.95(13), 137404 (2005). [CrossRef] [PubMed]
  13. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312(5775), 892–894 (2006). [CrossRef] [PubMed]
  14. J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B80(3), 035109 (2009). [CrossRef]
  15. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011). [CrossRef] [PubMed]
  16. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011). [CrossRef] [PubMed]
  17. Z. Ku, J. Zhang, and S. R. J. Brueck, “Bi-anisotropy of multiple-layer fishnet negative-index metamaterials due to angled sidewalls,” Opt. Express17(8), 6782–6789 (2009). [CrossRef] [PubMed]
  18. Z. Ku and S. R. J. Brueck, “Experimental demonstration of sidewall-angle induced bi-anisotropy in multiple-layer negative-index metamaterials,” Appl. Phys. Lett.94(15), 153107 (2009). [CrossRef]
  19. Z. Ku, K. M. Dani, P. C. Upadhya, and S. R. Brueck, “Bianisotropic negative-index metamaterial embedded in a symmetric medium,” J. Opt. Soc. Am. B26(12), B34–B38 (2009). [CrossRef]
  20. D. A. Powell and Y. S. Kivshar, “Substrate-induced bianisotropy in metamaterials,” Appl. Phys. Lett.97(9), 091106 (2010). [CrossRef]
  21. A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011). [CrossRef]
  22. M. Albooyeh and C. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt.13(10), 105102 (2011). [CrossRef]
  23. H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. Mahmood, and L. Wen, “Free-standing THz electromagnetic metamaterials,” Opt. Express16(18), 13773–13780 (2008). [CrossRef] [PubMed]
  24. L. L. Hou, J. Y. Chin, X. M. Yang, L. X. Qi, R. P. Liu, F. Y. Xu, and T. J. Cui, “Advanced parameter retrievals for metamaterial slabs using an inhomogeneous model,” J. Appl. Phys.103(6), 064904 (2008). [CrossRef]
  25. D. M. Pozar, Microwave Engineering, 3rd edition (John Wiley & Sons, 2004).
  26. J. A. Kong, Electromagnetic Wave Theory (EMW, 2000).
  27. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009). [CrossRef] [PubMed]
  28. C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 367–375 (2010). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  30. C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009). [CrossRef] [PubMed]
  31. J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express17(17), 14771–14779 (2009). [CrossRef] [PubMed]
  32. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007). [CrossRef]
  33. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express18(14), 14553–14567 (2010). [CrossRef] [PubMed]
  34. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007). [CrossRef]
  35. A. Andryieuski, S. Ha, A. A. Sukhorukov, Y. S. Kivshar, and A. V. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B86(3), 035127 (2012). [CrossRef]
  36. A. Ishimaru, S.-W. Lee, Y. Kuga, and V. Jandhyala, “Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory,” IEEE Trans. Antenn. Propag.51(10), 2550–2557 (2003). [CrossRef]
  37. J. D. Jackson, Classical Electrodynamics, 3rd edition (John Wiley & Sons, 1999).
  38. R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002). [CrossRef]
  39. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited