OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5625–5633

Optical magnetic field mapping using a subwavelength aperture

Hyun Woo Kihm, Jineun Kim, Sukmo Koo, Jaesung Ahn, Kwangjun Ahn, Kwanggeol Lee, Namkyoo Park, and Dai-Sik Kim  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5625-5633 (2013)
http://dx.doi.org/10.1364/OE.21.005625


View Full Text Article

Enhanced HTML    Acrobat PDF (1820 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Local distribution of the optical magnetic field is a critical parameter in developing materials with artificially engineered optical properties. Optical magnetic field characterization in nano-scale remains a challenge, because of the weak matter-optical magnetic field interactions. Here, we demonstrate an experimental visualization of the optical magnetic field profiles by raster scanning circular apertures in metal film or in a conical probe. Optical magnetic fields of surface plasmon polaritons and radially polarized beam are visualized by measuring the transmission through metallic apertures, in excellent agreements with theoretical predictions. Our results show that Bethe-Bouwkamp aperture can be used in visualizing optical magnetic field profiles.

© 2013 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Physical Optics

History
Original Manuscript: December 10, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 23, 2013
Published: February 28, 2013

Virtual Issues
March 8, 2013 Spotlight on Optics

Citation
Hyun Woo Kihm, Jineun Kim, Sukmo Koo, Jaesung Ahn, Kwangjun Ahn, Kwanggeol Lee, Namkyoo Park, and Dai-Sik Kim, "Optical magnetic field mapping using a subwavelength aperture," Opt. Express 21, 5625-5633 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5625


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Jackson, Classical Electrodynamics, 3rd edition ed. (John Wiley & Sons, Inc, New York, 1999).
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
  4. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, ““Magnetism from conductors and enhanced nonlinear phenomena,” IEEE,” T. Microw. Theory47(11), 2075–2084 (1999). [CrossRef]
  6. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008). [CrossRef] [PubMed]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  8. S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009). [CrossRef] [PubMed]
  9. S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012). [CrossRef] [PubMed]
  10. K. Lee, M. Yi, S. E. Park, and J. Ahn, “Phase-shift anomaly caused by subwavelength-scale metal slit or aperture diffraction,” Opt. Lett.38(2), 166–168 (2013). [CrossRef]
  11. A. Asenjo-Garcia, A. Manjavacas, V. Myroshnychenko, and F. J. García de Abajo, “Magnetic polarization in the optical absorption of metallic nanoparticles,” Opt. Express20(27), 28142–28152 (2012). [CrossRef] [PubMed]
  12. J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett.102(9), 093906 (2009). [CrossRef] [PubMed]
  13. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007). [CrossRef]
  14. D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009). [CrossRef] [PubMed]
  15. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  16. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009). [CrossRef] [PubMed]
  17. N. Kumar, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. C. M. Planken, and A. J. L. Adam, “THz near-field Faraday imaging in hybrid metamaterials,” Opt. Express20(10), 11277–11287 (2012). [CrossRef] [PubMed]
  18. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012). [CrossRef] [PubMed]
  19. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011). [CrossRef] [PubMed]
  20. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express15(19), 11781–11789 (2007). [CrossRef] [PubMed]
  21. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express17(5), 3826–3834 (2009). [CrossRef] [PubMed]
  22. E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000). [CrossRef]
  23. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011). [CrossRef] [PubMed]
  24. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944). [CrossRef]
  25. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys.17(1), 35–100 (1954). [CrossRef]
  26. A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010). [CrossRef] [PubMed]
  27. J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012). [CrossRef] [PubMed]
  28. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University press, 2006).
  30. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009). [CrossRef] [PubMed]
  31. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  32. D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008). [CrossRef]
  33. D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008). [CrossRef]
  34. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Discrimination of field components in optical probe microscopy,” Opt. Lett.37(17), 3606–3608 (2012). [CrossRef] [PubMed]
  35. H. W. Kihm, K. G. Lee, D. S. Kim, and K. J. Ahn, “Dual mode near-field scanning optical microscopy for near-field imaging of surface plasmon polariton,” Opt. Commun.282(12), 2442–2445 (2009). [CrossRef]
  36. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag Berlin HeidelBerg, Berlin, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited