OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6274–6285

Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics

Peng Wang and Rajesh Menon  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6274-6285 (2013)
http://dx.doi.org/10.1364/OE.21.006274


View Full Text Article

Enhanced HTML    Acrobat PDF (1595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanophotonic light trapping offers a promising approach to increased efficiency in thin-film organic photovoltaics. In this paper, an extension of the direct-binary-search algorithm was adopted to optimize dielectric nanophotonic structures for increasing power output of ultra-thin organic solar cells. The optimized devices were comprised of an absorber layer sandwiched between two patterned, transparent, conducting cladding layers. Light trapping in such devices with an absorber thickness of only 10nm increases power output by a factor of 16 when compared to a flat reference device. We further show that even under oblique illumination with angles ranging from 0 to 60degrees, such a device could produce over 7 times more power compared to a flat reference device. Finally, we also performed a spectral and parametric analysis of the optimized design, and show that the increase is primarily due to guided-mode resonances. Our simulations indicate that this new design approach has the potential to significantly increase the performance of ultra-thin solar cells in realistic scenarios.

© 2013 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6188) Thin films : Spectral properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Solar Energy

History
Original Manuscript: December 12, 2012
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 24, 2013
Published: March 5, 2013

Citation
Peng Wang and Rajesh Menon, "Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics," Opt. Express 21, 6274-6285 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6274


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res.19(07), 1924–1945 (2004). [CrossRef]
  2. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today10(11), 28–33 (2007). [CrossRef]
  3. C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, “Flexible, long-lived, large-area, organic solar cells,” Sci. Energy Mater. Sci. Cell91, 379–384 (2007).
  4. M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nat Commun3, 770 (2012). [CrossRef] [PubMed]
  5. T. L. Benanti and D. Venkataraman, “Organic solar cells: an overview focusing on active layer morphology,” Photosynth. Res.87(1), 73–81 (2006). [CrossRef] [PubMed]
  6. A. Tada, Y. Geng, Q. Wei, K. Hashimoto, and K. Tajima, “Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices,” Nat. Mater.10(6), 450–455 (2011). [CrossRef] [PubMed]
  7. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009). [CrossRef]
  8. Z. Pan, H. Gu, M. T. Wu, Y. Li, and Y. Chen, “Graphene-based functional materials for organic solar cells,” Opt. Mater. Express2(6), 814–824 (2012). [CrossRef]
  9. J. Nelson, “Organic photovoltaic films,” Curr. Opin. Solid St. Mat.6(1), 87–95 (2002). [CrossRef]
  10. J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Acc. Chem. Res.42(11), 1691–1699 (2009). [CrossRef] [PubMed]
  11. W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films518(24), 7450–7454 (2010). [CrossRef]
  12. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19(20), 19015–19026 (2011). [CrossRef] [PubMed]
  13. L. Song and A. Uddin, “Design of high efficiency organic solar cell with light trapping,” Opt. Express20(S5Suppl 5), A606–A621 (2012). [CrossRef] [PubMed]
  14. P. Zilio, D. Sammito, G. Zacco, M. Mazzeo, G. Gigli, and F. Romanato, “Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings,” Opt. Express20(S4Suppl 4), A476–A488 (2012). [CrossRef] [PubMed]
  15. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells--a survey of plasmonic nanostructures,” Opt. Express20(S2Suppl 2), A177–A189 (2012). [CrossRef] [PubMed]
  16. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011). [CrossRef] [PubMed]
  17. S. Kim, S. Na, J. Jo, D. Kim, and Y. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93(7), 073307 (2008). [CrossRef]
  18. P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express20(2), 1849–1855 (2012). [CrossRef] [PubMed]
  19. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt.26(14), 2788–2798 (1987). [CrossRef] [PubMed]
  20. G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express20(3), 2814–2823 (2012). [CrossRef] [PubMed]
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  22. Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006). [CrossRef]
  23. A. Lenz, H. Kariis, A. Pohl, P. Persson, and L. Ojamae, “The electronic structures and reflectivity of PEDOT:PSS from density functional theory,” Chem. Phys.384(1-3), 44–51 (2011). [CrossRef]
  24. M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater.10(6), 409–410 (2011). [CrossRef] [PubMed]
  25. L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron.3(3-4), 143–148 (2002). [CrossRef]
  26. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007). [CrossRef] [PubMed]
  27. American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  29. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  30. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  31. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2004).
  32. P. Wang and R. Menon, “Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics,” Opt. Express20(S4Suppl 4), A545–A553 (2012). [CrossRef] [PubMed]
  33. L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys.37(11), R123–R141 (2004). [CrossRef]
  34. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011). [CrossRef]
  35. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature406(6799), 1027–1031 (2000). [CrossRef] [PubMed]
  36. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009). [CrossRef] [PubMed]
  37. N. Brimhall, T. L. Andrew, R. V. Manthena, and R. Menon, “Breaking the far-field diffraction limit in optical nanopatterning via repeated photochemical and electrochemical transitions in photochromic molecules,” Phys. Rev. Lett.107(20), 205501 (2011). [CrossRef] [PubMed]
  38. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express14(6), 2300–2308 (2006). [CrossRef] [PubMed]
  39. J. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007). [CrossRef]
  40. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F. J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett.11(2), 661–665 (2011). [CrossRef] [PubMed]
  41. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett.12(6), 2971–2976 (2012). [CrossRef] [PubMed]
  42. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012). [CrossRef] [PubMed]
  43. A. Mavrokefalos, S. E. Han, S. Y. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett.12(6), 2792–2796 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited