OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6360–6370

Self-aligning universal beam coupler

David A. B. Miller  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6360-6370 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a device that can take an arbitrary monochromatic input beam and, automatically and without any calculations, couple it into a single-mode guide or beam. Simple feedback loops from detectors to modulator elements allow the device to adapt to any specific input beam form. Potential applications include automatic compensation for misalignment and defocusing of an input beam, coupling of complex modes or multiple beams from fibers or free space to single-mode guides, and retaining coupling to a moving source. Straightforward extensions allow multiple different overlapping orthogonal input beams to be separated simultaneously to different single-mode guides with no splitting loss in principle. The approach is suitable for implementation in integrated optics platforms that offer elements such as phase shifters, Mach-Zehnder interferometers, grating couplers, and integrated monitoring detectors, and the basic approach is applicable in principle to other types of waves, such as microwaves or acoustics.

© 2013 OSA

OCIS Codes
(220.1140) Optical design and fabrication : Alignment
(230.3120) Optical devices : Integrated optics devices
(140.3298) Lasers and laser optics : Laser beam combining
(220.4298) Optical design and fabrication : Nonimaging optics
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: January 23, 2013
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 26, 2013
Published: March 6, 2013

David A. B. Miller, "Self-aligning universal beam coupler," Opt. Express 21, 6360-6370 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol.30(4), 521–531 (2012). [CrossRef]
  2. A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012). [CrossRef] [PubMed]
  3. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express20(9), 9396–9402 (2012). [CrossRef] [PubMed]
  4. Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator,” Opt. Lett.30(2), 141–143 (2005). [CrossRef] [PubMed]
  5. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012), doi:. [CrossRef]
  6. D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process.51(9), 2381–2401 (2003). [CrossRef]
  7. S. Azam, T. Yasui, and K. Jinguji, “Synthesis algorithm of a multi-channel lattice-form optical delay-line circuit,” Optik (Stuttg.)121(12), 1075–1083 (2010). [CrossRef]
  8. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13245 . [CrossRef] [PubMed]
  9. R. N. Mahalati, D. Askarov, J. P. Wilde, and J. M. Kahn, “Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling,” Opt. Express20(13), 14321–14337 (2012). [CrossRef] [PubMed]
  10. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express14(25), 12188–12195 (2006). [CrossRef] [PubMed]
  11. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 x 32 optical matrix switch,” European Conference on Optical Communications (ECOC 2006), Cannes, France, 24 – 28 Sept. 2006, Paper OThV4. 10.1109/ECOC.2006.4801113 [CrossRef]
  12. G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Quantum Electron.17(3), 571–580 (2011). [CrossRef]
  13. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-Insulator,” Opt. Express18(13), 13655–13660 (2010). [CrossRef] [PubMed]
  14. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007). [CrossRef] [PubMed]
  15. G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure,” Opt. Express15(16), 10091–10096 (2007). [CrossRef] [PubMed]
  16. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol.27(5), 612–618 (2009). [CrossRef]
  17. T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express16(3), 1659–1668 (2008). [CrossRef] [PubMed]
  18. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005), doi:. [CrossRef]
  19. D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol.27(7), 930–937 (2009). [CrossRef]
  20. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009). [CrossRef] [PubMed]
  21. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011). [CrossRef] [PubMed]
  22. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20(21), 23985–23993 (2012). [CrossRef] [PubMed]
  23. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:. [CrossRef] [PubMed]
  24. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012). [CrossRef] [PubMed]
  25. D. A. B. Miller, “How complicated must an optical component be?” J. Opt. Soc. Am. A30(2), 238–251 (2013). [CrossRef]
  26. K. Chang, ed., Handbook of RF/Microwave Components and Engineering (Wiley, 2003).
  27. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:. [CrossRef]
  28. D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:. [CrossRef]
  29. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  30. D. A. B. Miller, “Self-configuring universal linear optical component,” Photonics Research. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (3822 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited