OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7065–7081

Opto-thermal analysis of a lightweighted mirror for solar telescope

Ravinder K. Banyal, B. Ravindra, and S. Chatterjee  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7065-7081 (2013)
http://dx.doi.org/10.1364/OE.21.007065


View Full Text Article

Enhanced HTML    Acrobat PDF (2059 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.

© 2013 OSA

OCIS Codes
(110.6770) Imaging systems : Telescopes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.4670) Materials : Optical materials
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.4040) Optical devices : Mirrors
(080.1005) Geometric optics : Aberration expansions

ToC Category:
Imaging Systems

History
Original Manuscript: December 3, 2012
Revised Manuscript: February 19, 2013
Manuscript Accepted: February 25, 2013
Published: March 13, 2013

Citation
Ravinder K. Banyal, B. Ravindra, and S. Chatterjee, "Opto-thermal analysis of a lightweighted mirror for solar telescope," Opt. Express 21, 7065-7081 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. René, “The historical growth of telescope aperture,” Publ. Astron. Soc. Pac.116, 77–83, (2004). [CrossRef]
  2. R. Gilmozzi, “Science and technology drivers for future giant telescopes,” Proc. SPIE5489, 1–10 (2004). [CrossRef]
  3. O. von der Lühe, “History of solar telescopes,” Exp. Astron.25, 193–207, (2009). [CrossRef]
  4. K. L. Stephen, R. R. Thomas, and W. Jeremy, “Advanced technology solar telescope,” Earth Moon Planets104,77–82, (2009). [CrossRef]
  5. C. J. Sánchez, M. Collados, D. Soltau, R. López, J. L. Rasilla, and B. Gelly, “Current concept for the 4m European Solar Telescope (EST) optical design,” Proc. SPIE7652, 76520S (2010). [CrossRef]
  6. S. S. Hasan, D. Soltau, H. Kärcher, M. Säß, and T. Berkefeld, “NLST: India’s National Large Solar Telescope,” Astron. Nachr.331, 628–635 (2010). [CrossRef]
  7. W. Schmidt, O. von der Lühe, R. Volkmer, C. Denker, S. K. Solanki, H. Balthasar, N. B. Gonzalez, Th. Berkefeld, M. Collados, A. Fischer, C. Halbgewachs, F. Heidecke, A. Hofmann, F. Kneer, A. Lagg, H. Nicklas, E. Popow, K.G. Puschmann, D. Schmidt, M. Sigwarth, M. Sobotka, D. Soltau, J. Staude, K.G. Strassmeier, and T.A. Waldmann, “The 1.5 meter solar telescope GREGOR,” Astron. Nachr.331, 796–809 (2012).
  8. W. Cao, N. Gorceix, R. Coulter, K. Ahn, T. R. Rimmele, and P. R. Goode, “Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear,” Astron. Nachr.333, 636–639 (2010). [CrossRef]
  9. P. Emde, J. Kühn, U. Weis, and T. Bornkessel, “Thermal design features of the solar telescope GREGOR,” Proc. SPIE5495, 238–246 (2004). [CrossRef]
  10. A. Miyashita, R. Ogasawara, G. Macaraya, and N. Itoh, “Temperature control for the primary mirror of Subaru Telescope using the data from ‘Forecast for Mauna Kea observatories’,” Publ. Nat. Astron. Observ. Jpn7, 25–31 (2003).
  11. C. M. Lowne, “An investigation of the effects of mirror temperature upon telescope seeing,” Mon. Not. R. Astron. Soc.188, 249–259 (1979).
  12. B. Bohannan, E. T. Pearson, and D. Hagelbarger, “Thermal control of classical astronomical primary mirrors,” Proc. SPIE4003, 406–416 (2000). [CrossRef]
  13. R. J. S. Greenhalgh, L. M. Stepp, and E. R. Hansen, “Gemini primary mirror thermal management system,” Proc. SPIE2199, 911–921 (1994). [CrossRef]
  14. A. Ahmad, Handbook of Optomechanical Engineering (CRC Press, 1997), Chap. 5.
  15. T. L. Gray, M. W. Smith, L. E. Cohan, and D. W. Miller, “Minimizing high spatial frequency residual in active space telescope mirrors,” Proc. SPIE7436, 74360M (2009.) [CrossRef]
  16. J. M. Tamkin, “A study of image artifacts caused by structured mid-spatial frequnecy fabrication errors on optica surfaces,” Ph. D. dissertion (Univesity of Arizona, 2010).
  17. R. N. Youngworth and B. D. Stone, “Simple estimates for the effects of mid-spatial-frequency errors on image quality,” Appl. Opt.39, 2198–2209 (2000). [CrossRef]
  18. E. Segato, V. D. Deppo, S. Debei, G. Naletto, G. Cremonese, and E. Flamini, “Method for studying the effects of thermal deformations on optical systems for space application,” Appl. Opt.50, 2836–2845 (2011). [CrossRef] [PubMed]
  19. Y. Ding, Z. You, E. Lu, and H. Cheng, “A thermo-optical analysis method for a space optical remote sensor optostructural system,” Opt. Eng.43, 2730–2735 (2004). [CrossRef]
  20. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer (Wiley, 2001).
  21. R. K. Banyal and B. Ravindra, “Thermal characteristics of a classical solar telescope primary mirror,” New Astron.16, 328–336 (2011). [CrossRef]
  22. F. M. Gottsche and F. S. Olesen, “Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data,” Remote Sens. Environ.76, 337–348 (2001). [CrossRef]
  23. M. H. Sadd, Elasticity: Theory, Applications, and Numerics (Academic Press, 2009), Chap. 2.
  24. M. Süß, T. Volkmer, and P. Eisenträger, “GREGOR M1 mirror and cell design: Effect of different mirror substrate on the telescope design,” Proc. SPIE7736, 77391l (2010). [CrossRef]
  25. T. Westerhoff, M. Schäfer, A. Thomas, M. Weissenburger, T. Werner, and A. Werz, “Manufacturing of the ZERODUR 1.5-m primary mirror for the solar telescope GREGOR as preparation of light weighting of blanks up to 4-m diameter,” Proc. SPIE7739, 77390M–77390M-9 (2010). [CrossRef]
  26. K. B. Doyle, V. L. Genberg, and G. J. Michels, Integrated Optomechanical Analysis (SPIE Press, 2002), Chap. 4. [CrossRef]
  27. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am.66, 207–211 (1976). [CrossRef]
  28. V. N. Mahajan, “Zernike annular polynomials and optical aberrations of systems with annular pupils,” Appl. Opt.33, 8125–8127 (1994). [CrossRef] [PubMed]
  29. We have chsoen the normalization factor and the indexing scheme similar to Noll’s notaion which is also followed in Zemax ray-tracing software.
  30. D. W. Kim, B. J. Lewisa, and J. H. Burgea, “Open-source data analysis and visualization software platform: SAGUARO,” Proc. SPIE8126, 81260B–81260B-10 (2011). [CrossRef]
  31. R.A. Applegate, E.J. Sarver, and V. Kemsara, “Are all aberrations equal?,” J. Refract. Surg.18, S556–S562, (2002). [PubMed]
  32. Zemax, Optical Design Program (User’s Manual, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited