OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7133–7138

Surface localized polymer aligned liquid crystal lens

Lu Lu, Vassili Sergan, Tony Van Heugten, Dwight Duston, Achintya Bhowmik, and Philip J. Bos  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7133-7138 (2013)
http://dx.doi.org/10.1364/OE.21.007133


View Full Text Article

Enhanced HTML    Acrobat PDF (1940 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The surface localized polymer alignment (SLPA) method allows complete control of the polar pretilt angle as a function of position in liquid crystal devices. In this work, a liquid crystal (LC) cylindrical lens is fabricated by the SLPA method. The focal length of the LC lens is set by the polymerization conditions, and can be varied by a non-segmented electrode. The LC lens does not require a shaped substrate, or complicated electrode patterns, to achieve a desired parabolic phase profile. Therefore, both fabrication and driving process are relatively simple.

© 2013 OSA

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(160.3710) Materials : Liquid crystals
(220.3630) Optical design and fabrication : Lenses

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 30, 2013
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 25, 2013
Published: March 14, 2013

Citation
Lu Lu, Vassili Sergan, Tony Van Heugten, Dwight Duston, Achintya Bhowmik, and Philip J. Bos, "Surface localized polymer aligned liquid crystal lens," Opt. Express 21, 7133-7138 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979). [CrossRef]
  2. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express16(23), 19277–19284 (2008). [CrossRef] [PubMed]
  3. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012). [CrossRef] [PubMed]
  4. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express15(18), 11328–11335 (2007). [CrossRef] [PubMed]
  5. G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006). [CrossRef] [PubMed]
  6. L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Late-newspaper: comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Int. Symp. Dig. Tech. 42, 171–174 (2011).
  7. Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012). [CrossRef]
  8. P. J. Bos and A. K. Bhowmik, “Liquid-crystal technology advances toward future “True” 3-D flat-panel displays,” Inf. Display27, 6–9 (2011).
  9. G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer44(1), 17–19 (2011). [CrossRef]
  10. L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Distinguished paper: tunable polymer localized liquid crystal lenses for autostereoscopic 3D displays,” SID Int. Symp. Dig. Tech. 43, 383–386 (2012). [CrossRef]
  11. N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005). [CrossRef]
  12. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp.16(8), 847–855 (2008). [CrossRef]
  13. Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” SID Int. Symp. Dig. Tech. 40, 111–114 (2009). [CrossRef]
  14. Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express18(18), 18506–18518 (2010). [CrossRef] [PubMed]
  15. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express16(6), 4302–4308 (2008). [CrossRef] [PubMed]
  16. M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011). [CrossRef]
  17. F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006). [CrossRef]
  18. T. Nose, S. Masuda, S. Sato, J. L. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett.22(6), 351–353 (1997). [CrossRef] [PubMed]
  19. H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett.29(14), 1608–1610 (2004). [CrossRef] [PubMed]
  20. V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005). [CrossRef]
  21. V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett.486(4-6), 123–125 (2010). [CrossRef]
  22. L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett.101(25), 251912 (2012). [CrossRef]
  23. L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.86(5), 051706 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited