OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7180–7195

Method to improve the noise figure and saturation power in multi-contact semiconductor optical amplifiers: simulation and experiment

Kevin Carney, Robert Lennox, Ramon Maldonado-Basilio, Severine Philippe, Frederic Surre, Louise Bradley, and Pascal Landais  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7180-7195 (2013)
http://dx.doi.org/10.1364/OE.21.007180


View Full Text Article

Enhanced HTML    Acrobat PDF (2769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The consequences of tailoring the longitudinal carrier density along the active layer of a multi-contact bulk semiconductor optical amplifier (SOA) are investigated using a rate equation model. It is shown that both the noise figure and output power saturation can be optimized for a fixed total injected bias current. The simulation results are validated by comparison with experiment using a multi-contact SOA. The inter-contact resistance is increased using a focused ion beam in order to optimize the carrier density control. A chip noise figure of 3.8 dB and a saturation output power of 9 dBm are measured experimentally for a total bias current of 150 mA.

© 2013 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Optoelectronics

History
Original Manuscript: November 21, 2012
Revised Manuscript: February 15, 2013
Manuscript Accepted: March 4, 2013
Published: March 14, 2013

Citation
Kevin Carney, Robert Lennox, Ramon Maldonado-Basilio, Severine Philippe, Frederic Surre, Louise Bradley, and Pascal Landais, "Method to improve the noise figure and saturation power in multi-contact semiconductor optical amplifiers: simulation and experiment," Opt. Express 21, 7180-7195 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Mørk, M. L. Nielsen, and T. W. Berg, “The dynamics of semiconductor optical amplifiers: modeling and applications,” Opt. Photonics News 14(7), 42–48 (2003). [CrossRef]
  2. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error free 320Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007). [CrossRef]
  3. A. Borghesani, “Semiconductor optical amplifiers for advanced optical applications,” in International Conference on Transparent Optical Networks, ICTON 2006, 119–122. [CrossRef]
  4. L. H. Spiekman, “Ubiquitous amplification: applications of the semiconductor optical amplifier,” in the Joint International Conference on Optical Internet and Next Generation Network (COIN-NGNCON 2006), 292–294. [CrossRef]
  5. D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Sel. Top. Quantum Electron. 13(1), 22–31 (2007). [CrossRef]
  6. H. J. Kim and J. I. Song, “All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications,” Opt. Express 20(7), 8047–8054 (2012). [CrossRef] [PubMed]
  7. R. Bonk, G. Huber, T. Vallaitis, S. Koenig, R. Schmogrow, D. Hillerkuss, R. Brenot, F. Lelarge, G. H. Duan, S. Sygletos, C. Koos, W. Freude, and J. Leuthold, “Linear semiconductor optical amplifiers for amplification of advanced modulation formats,” Opt. Express 20(9), 9657–9672 (2012). [CrossRef] [PubMed]
  8. F. Crottini, P. Salleras, M. A. Moreno, B. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17(5), 977–979 (2005). [CrossRef]
  9. R. Brenot, F. Pommereau, O. Le Gouez, J. Landreau, F. Poingt, L. Le Gouezigou, B. Rousseau, F. Lelarge, F. Martin, and G. H. Duan, “Experimental study of the impact of optical confinement on saturation effects in SOA,” in Optical Fiber Communications Conference (OFC 2005) paper OME50. [CrossRef]
  10. E. Staffan Bjorlin and J. E. Bowers, “Noise figure of vertial-cavity semiconductor optical amplifiers,” IEEE J. Quantum Electron. 38(1), 61–66 (2002). [CrossRef]
  11. K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broadband MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett. 17(5), 974–976 (2005). [CrossRef]
  12. K. Carney, R. Lennox, R. Maldonado-Basilio, S. Philippe, A. L. Bradley, and P. Landais, “Noise controlled semiconductor optical amplifier based on lateral cavity laser,” Electron. Lett. 46(18), 1288–1289 (2010). [CrossRef]
  13. G. Bendelli, K. Komori, S. Arai, and Y. Suematsu, “A new structure for high-power TW-SLA,” IEEE Photon. Technol. Lett. 3(1), 42–44 (1991). [CrossRef]
  14. G. Giuliani and D. D’Alessandro, “Noise analysis of conventional and gain-clamped semiconductor optical amplifiers,” J. Lightwave Technol. 18(9), 1256–1263 (2000). [CrossRef]
  15. M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photon. Technol. Lett. 8(1), 58–59 (1996). [CrossRef]
  16. S. S. Saini, J. Bowser, R. Enke, V. Luciani, P. J. S. Heim, and M. Dagenais, “A semiconductor optical amplifier with high saturation power, low noise figure and low polarization dependent gain over the C-band,” in Lasers and Electro-Optics Society (LEOS 2004), 102–103.
  17. R. Lennox, K. Carney, R. Maldonado-Basilio, S. Philippe, A. L. Bradley, and P. Landais, “Impact of bias current distribution on the noise figure and power saturation of a multicontact semiconductor optical amplifier,” Opt. Lett. 36(13), 2521–2523 (2011). [CrossRef] [PubMed]
  18. T. Mukai and Y. Yamamoto, “Noise in an AlGaAs semiconductor laser amplifier,” IEEE J. Quantum Electron. 18(4), 564–575 (1982). [CrossRef]
  19. E. Desurvire, “On the physical origin of the 3dB noise figure limit in laser and parametric optical amplifiers,” Opt. Fiber Technol. 5(1), 40–61 (1999). [CrossRef]
  20. M. Shtaif, B. Tromborg, and G. Eisenstein, “Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions,” IEEE J. Quantum Electron. 34(5), 869–878 (1998). [CrossRef]
  21. H. A. Haus, “The noise figure of optical smplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998). [CrossRef]
  22. T. Briant, P. Grangier, R. Tualle-Brouri, A. Bellemain, R. Brenot, and B. Thedrez, “Accurate determination of the noise figure of polarization dependent optical amplifiers: theory and experiment,” J. Lightwave Technol. 24(3), 1499–1503 (2006). [CrossRef]
  23. D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6(2), 122–154 (2000). [CrossRef]
  24. M. J. Connolly, Semiconductor Optical Amplifiers (Kluwer Academic Publishers, 2002), Chap. 3.
  25. C. Gallep, A. Rieznik, H. Fragnito, N. Frateschi, and E. Conforti, “Black-box model for the complete characterization of the spectral gain and noise in semiconductor optical amplifiers,” Opt. Express 14(4), 1626–1631 (2006). [CrossRef] [PubMed]
  26. J. Park and Y. Kawakami, “Time-domain models for the performance simulation of semiconductor optical amplifiers,” Opt. Express 14(7), 2956–2968 (2006). [CrossRef] [PubMed]
  27. M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proc-J 132, 58–63 (1985). [CrossRef]
  28. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion,” J. Lightwave Technol. 10(8), 1056–1069 (1992). [CrossRef]
  29. M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001). [CrossRef]
  30. H. T. Friis, “Noise figures of radio receivers,” Proc. IRE 32, 419–422 (1944). [CrossRef]
  31. Y. Yamamoto and K. Inoue, “Noise in amplifiers,” J. Lightwave Technol. 21(11), 2895–2915 (2003). [CrossRef]
  32. F. Surre and P. Landais, “A semiconductor optical amplifier with a reduced noise figure,” UK patent GB0821602.0, Feb. 9, 2011.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited