OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7202–7208

Investigation of a planar optical waveguide in 2D PPLN using Helium implantation technique

Q. Ripault, M. W. Lee, F. Mériche, T. Touam, B. Courtois, E. Ntsoenzok, L.-H. Peng, A. Fischer, and A. Boudrioua  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7202-7208 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we report the investigation of a planar waveguide in a 2D periodically-poled lithium niobate (PPLN). The waveguide is fabricated by helium (He+) implantation at 2 MeV and a fluence of 1.5 x 1016 ions/cm2. Second harmonic generation (SHG) at 532 nm using a Q-switched laser and a CW laser diode at 1064 nm, was measured as a function of angular distribution and temperature. The experimental results show higher gain in SHG conversion efficiency in the waveguide than in the bulk 2D PPLN. In particular, SHGs from 2D reciprocal lattice vectors (RLV) are observed and studied.

© 2013 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

Original Manuscript: November 29, 2012
Revised Manuscript: January 15, 2013
Manuscript Accepted: January 16, 2013
Published: March 14, 2013

Q. Ripault, M. W. Lee, F. Mériche, T. Touam, B. Courtois, E. Ntsoenzok, L.-H. Peng, A. Fischer, and A. Boudrioua, "Investigation of a planar optical waveguide in 2D PPLN using Helium implantation technique," Opt. Express 21, 7202-7208 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single pass second harmonic generation of a single-frequency tapered diode,” Opt. Express17(18), 6532–6539 (2009).
  2. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000). [CrossRef] [PubMed]
  3. L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tunability of second-harmonic generation from two dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett.84(17), 3250–3252 (2004). [CrossRef]
  4. V. Berger, “Nonlinear Photonic Crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998). [CrossRef]
  5. M. L. Shah, “Waveguide in LiNbO3 by ion exchange techniques,” Appl. Phys. Lett.26(11), 652–653 (1975). [CrossRef]
  6. K. Gallo, C. Codemard, C. B. E. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett.31(9), 1232–1234 (2006). [CrossRef] [PubMed]
  7. B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, “Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides,” Opt. Commun.247(4-6), 461–469 (2005). [CrossRef]
  8. J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LinbO3 waveguides,” J. Appl. Opt.84, 5180–5183 (1998).
  9. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Opt.106, 081101 (2012).
  10. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012). [CrossRef]
  11. A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-μm -thick periodically poled LiNbO3 films,” Opt. Lett.25(14), 1034–1036 (2000). [CrossRef] [PubMed]
  12. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993). [CrossRef]
  13. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985), www.srim.org .
  14. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Int. Optical Materials29(11), 1523–1542 (2007). [CrossRef]
  15. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007). [CrossRef] [PubMed]
  16. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  17. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt.15(1), 151–155 (1976). [CrossRef] [PubMed]
  18. T. Pliska, D. Fluck, P. Gunter, L. Beckers, and C. Buchal, “Mode propagation losses in He+ ion-implanted KNbO3 waveguides,” J. Opt. Soc. Am. B15(2), 628–639 (1998). [CrossRef]
  19. S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, D. Y. Shen, H. J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express12(5), 747–752 (2004). [CrossRef] [PubMed]
  20. B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited