OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7209–7215

Probing scattering mechanisms with symmetric quantum cascade lasers

Christoph Deutsch, Hermann Detz, Tobias Zederbauer, Aaron M. Andrews, Pavel Klang, Tillmann Kubis, Gerhard Klimeck, Manfred E. Schuster, Werner Schrenk, Gottfried Strasser, and Karl Unterrainer  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7209-7215 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A characteristic feature of quantum cascade lasers is their unipolar carrier transport. We exploit this feature and realize nominally symmetric active regions for terahertz quantum cascade lasers, which should yield equal performance with either bias polarity. However, symmetric devices exhibit a strongly bias polarity dependent performance due to growth direction asymmetries, making them an ideal tool to study the related scattering mechanisms. In the case of an InGaAs/GaAsSb heterostructure, the pronounced interface asymmetry leads to a significantly better performance with negative bias polarity and can even lead to unidirectionally working devices, although the nominal band structure is symmetric. The results are a direct experimental proof that interface roughness scattering has a major impact on transport/lasing performance.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 11, 2012
Revised Manuscript: February 14, 2013
Manuscript Accepted: February 14, 2013
Published: March 14, 2013

Christoph Deutsch, Hermann Detz, Tobias Zederbauer, Aaron M. Andrews, Pavel Klang, Tillmann Kubis, Gerhard Klimeck, Manfred E. Schuster, Werner Schrenk, Gottfried Strasser, and Karl Unterrainer, "Probing scattering mechanisms with symmetric quantum cascade lasers," Opt. Express 21, 7209-7215 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007). [CrossRef]
  2. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng.49(11), 111102 (2010). [CrossRef]
  3. C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Bidirectional semiconductor laser,” Science286(5440), 749–752 (1999). [CrossRef] [PubMed]
  4. L. Lever, N. M. Hinchcliffe, S. P. Khanna, P. Dean, Z. Ikonic, C. A. Evans, A. G. Davies, P. Harrison, E. H. Linfield, and R. W. Kelsall, “Terahertz ambipolar dual-wavelength quantum cascade laser,” Opt. Express17(22), 19926–19932 (2009). [CrossRef] [PubMed]
  5. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B79(19), 195323 (2009). [CrossRef]
  6. R. Nelander and A. Wacker, “Temperature dependence of gain profile for terahertz quantum cascade lasers,” Appl. Phys. Lett.92(8), 081102 (2008). [CrossRef]
  7. C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys.105(12), 123102 (2009). [CrossRef]
  8. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performance of strain-balanced quantum cascade lasers,” Appl. Phys. Lett.98(9), 091105 (2011). [CrossRef]
  9. Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett.101(17), 171117 (2012). [CrossRef]
  10. M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface-scattering-rate engineering,” Appl. Phys. Lett.100(16), 163502 (2012). [CrossRef]
  11. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010). [CrossRef]
  12. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012). [CrossRef] [PubMed]
  13. T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts for terahertz quantum cascade lasers:Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett.97(26), 261106 (2010). [CrossRef]
  14. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett.90(4), 041112 (2007). [CrossRef]
  15. C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97(26), 261110 (2010). [CrossRef]
  16. M. Nobile, H. Detz, E. Mujagić, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Midinfrared intersubband absorption in InGaAs/GaAsSb multiple quantum wells,” Appl. Phys. Lett.95(4), 041102 (2009). [CrossRef]
  17. R. M. Feenstra, D. A. Collins, D. Z.-Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in InAs/GaSb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett.72(17), 2749–2752 (1994). [CrossRef] [PubMed]
  18. T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett.78(22), 3448 (2001). [CrossRef]
  19. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys.54(2), 437–672 (1982). [CrossRef]
  20. H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B. 28, C3G19 (2010). [CrossRef]
  21. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Intersubband Transitions in Quantum Wells: Physics and Device Applications II, Semiconductor,” Semiconductor and Semimetals Vol. 66 (Academic Press, San Diego, 2000).
  22. C. Deutsch, M. Krall, M. Brandstetter, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, G. Strasser, and K. Unterrainer, “High performance InGaAs/GaAsSb terahertz quantum cascade lasers operating up to 142 K,” Appl. Phys. Lett.101(21), 211117 (2012). [CrossRef]
  23. M. D. Escarra, A. Benz, A. M. Bhatt, A. J. Hoffman, X. Wang, J. Y. Fan, and C. Gmachl, “Thermoelectric effect in quantum cascade lasers,” IEEE Photon. J.2(3), 500–509 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited