OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7258–7275

Optomechanical and photothermal interactions in suspended photonic crystal membranes

David Woolf, Pui-Chuen Hui, Eiji Iwase, Mughees Khan, Alejandro W. Rodriguez, Parag Deotare, Irfan Bulu, Steven G. Johnson, Federico Capasso, and Marko Loncar  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7258-7275 (2013)
http://dx.doi.org/10.1364/OE.21.007258


View Full Text Article

Enhanced HTML    Acrobat PDF (3816 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present here an optomechanical system fabricated with novel stress management techniques that allow us to suspend an ultrathin defect-free silicon photonic-crystal membrane above a Silicon-on-Insulator (SOI) substrate with a gap that is tunable to below 200 nm. Our devices are able to generate strong attractive and repulsive optical forces over a large surface area with simple in- and out- coupling and feature the strongest repulsive optomechanical coupling in any geometry to date (gOM/2π ≈ −65 GHz/nm). The interplay between the optomechanical and photo-thermal-mechanical dynamics is explored, and the latter is used to achieve cooling and amplification of the mechanical mode, demonstrating that our platform is well-suited for potential applications in low-power mass, force, and refractive-index sensing as well as optomechanical accelerometry.

© 2013 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(230.5298) Optical devices : Photonic crystals
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Photonic Crystals

History
Original Manuscript: December 12, 2012
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 26, 2013
Published: March 15, 2013

Citation
David Woolf, Pui-Chuen Hui, Eiji Iwase, Mughees Khan, Alejandro W. Rodriguez, Parag Deotare, Irfan Bulu, Steven G. Johnson, Federico Capasso, and Marko Loncar, "Optomechanical and photothermal interactions in suspended photonic crystal membranes," Opt. Express 21, 7258-7275 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7258


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003). [CrossRef]
  2. X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008). [CrossRef] [PubMed]
  3. B. R. Ilic, S. Krylov, M. Kondratovich, and H. G. Craighead, “Optically actuated nanoelectromechanical oscillators,” IEEE J. Sel. Top. Quantum Electron. 13, 392–399 (2007). [CrossRef]
  4. Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006). [CrossRef]
  5. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009). [CrossRef] [PubMed]
  6. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004). [CrossRef] [PubMed]
  7. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007). [CrossRef] [PubMed]
  8. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006). [CrossRef]
  9. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009). [CrossRef]
  10. R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011). [CrossRef]
  11. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef] [PubMed]
  12. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009). [CrossRef] [PubMed]
  13. A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012). [CrossRef]
  14. O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef] [PubMed]
  15. M. W. Pruessner, T. H. Stievater, J. B. Khurgin, and W. S. Rabinovich, “Integrated waveguide-DBR microcavity optomechanical system,” Opt. Express 19, 21904–21918 (2011). [CrossRef] [PubMed]
  16. H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011). [CrossRef]
  17. Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009). [CrossRef] [PubMed]
  18. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009). [CrossRef]
  19. M. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009). [CrossRef]
  20. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009). [CrossRef] [PubMed]
  21. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008). [CrossRef] [PubMed]
  22. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005). [CrossRef] [PubMed]
  23. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005). [CrossRef] [PubMed]
  24. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009). [CrossRef]
  25. The expresion for the force is only strictly true when the (complex) wavevector is constant under translation, though it can still be used when the change in optical Q is small over the distance ds.
  26. A. W. Rodriguez, F. Capasso, and S. G. Johnson, “Bonding, antibonding and tunable optical forces in asymmetric membranes,” Opt. Express 19, 2225–2241 (2011). [CrossRef] [PubMed]
  27. J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012). [CrossRef] [PubMed]
  28. E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012). [CrossRef]
  29. D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor deformations drive limit cycle oscillations in interferometrically transduced MEMS beams,” Finite. Elem. Anal. Des. 49, 52–57 (2012). [CrossRef]
  30. P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012). [CrossRef] [PubMed]
  31. Y. Y. Gong, A. Rundquist, A. Majumdar, and J. Vuckovic, “Low power resonant optical excitation of an optomechanical cavity,” Opt. Express 19, 1429–1440 (2011). [CrossRef] [PubMed]
  32. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006). [CrossRef] [PubMed]
  33. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  34. Near-field thermal heat-transfer will modify ?t by a small amount, though we ignore this small effect in our analysis here for simplicity.
  35. H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  36. D. Rugar, H. J. Mamin, and P. Guethner, “Improved Fiber-Optic Interferometer for Atomic Force Microscopy,” Appl. Phys. Lett. 55, 2588–2590 (1989). [CrossRef]
  37. E. R. I. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Optics 37, 1762–1763 (1998). [CrossRef]
  38. K. J. Vahala, “Back-action limit of linewidth in an optomechanical oscillator,” Phys Rev A 78, 023832 (2008). [CrossRef]
  39. J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012). [CrossRef] [PubMed]
  40. M. El Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010). [CrossRef] [PubMed]
  41. T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006). [CrossRef]
  42. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007). [CrossRef] [PubMed]
  43. J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol 6, 203–215 (2011). [CrossRef] [PubMed]
  44. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001). [CrossRef] [PubMed]
  45. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).
  46. A. W. Rodriguez, F. Capasso, and S. G. Johnson, “The Casimir effect in microstructured geometries,” Nat. Photonics 5, 211–221 (2011). [CrossRef]
  47. S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008). [CrossRef]
  48. J. L. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000). [CrossRef]
  49. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited