OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7304–7315

Broadband directional coupling in aluminum nitride nanophotonic circuits

Matthias Stegmaier and Wolfram H. P. Pernice  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7304-7315 (2013)
http://dx.doi.org/10.1364/OE.21.007304


View Full Text Article

Enhanced HTML    Acrobat PDF (5041 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Aluminum nitride (AlN)-on-insulator has emerged as a promising platform for the realization of linear and non-linear integrated photonic circuits. In order to efficiently route optical signals on-chip, precise control over the interaction and polarization of evanescently coupled waveguide modes is required. Here we employ nanophotonic AlN waveguides to realize directional couplers with a broad coupling bandwidth and low insertion loss. We achieve uniform splitting of incoming modes, confirmed by high extinction-ratio exceeding 33dB in integrated Mach-Zehnder Interferometers. Optimized three-waveguide couplers furthermore allow for extending the coupling bandwidth over traditional side-coupled devices by almost an order of magnitude, with variable splitting ratio. Our work illustrates the potential of AlN circuits for coupled waveguide optics, DWDM applications and integrated polarization diversity schemes.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.1050) Materials : Acousto-optical materials
(160.6000) Materials : Semiconductor materials
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: January 14, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 7, 2013
Published: March 15, 2013

Citation
Matthias Stegmaier and Wolfram H. P. Pernice, "Broadband directional coupling in aluminum nitride nanophotonic circuits," Opt. Express 21, 7304-7315 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007). [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  3. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  4. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005). [CrossRef]
  5. W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846 (1974). [CrossRef]
  6. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  7. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17(17), 14543–14551 (2009). [CrossRef] [PubMed]
  8. K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010). [CrossRef]
  9. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011). [CrossRef] [PubMed]
  10. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011). [CrossRef] [PubMed]
  11. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008). [CrossRef] [PubMed]
  12. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008). [CrossRef]
  13. Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of Nanomechanical Resonators,” Phys. Rev. Lett.105(2), 027205 (2010). [CrossRef] [PubMed]
  14. B. Bhushan, Springer Handbook of Nanotechnology. (second ed.)Springer-Verlag, Heidelberg (2007).
  15. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011). [CrossRef] [PubMed]
  16. Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011). [CrossRef]
  17. C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012). [CrossRef]
  18. C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett.12(7), 3562–3568 (2012). [CrossRef] [PubMed]
  19. S. Ghosh, C. R. Doerr, and G. Piazza, “Aluminum nitride grating couplers,” Appl. Opt.51(17), 3763–3767 (2012). [CrossRef] [PubMed]
  20. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973). [CrossRef]
  21. M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009). [CrossRef]
  22. H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987). [CrossRef]
  23. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002). [CrossRef]
  24. P. Ganguly, J. C. Biswas, S. Das, and S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun.168(5-6), 349–354 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited