OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7328–7336

Super-thin Mikaelian’s lens of small index as a beam compressor with an extremely high compression ratio

Fei Sun, Yun Gui Ma, Xiaochen Ge, and Sailing He  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7328-7336 (2013)
http://dx.doi.org/10.1364/OE.21.007328


View Full Text Article

Enhanced HTML    Acrobat PDF (3198 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on a focusing Mikaelian’s lens with small refraction index (0<n<<1), an optical device is designed as a super-thin optical beam compressor (e.g., thickness = 3λ0) with an extremely high beam compression ratio (more than 19:1). This device can also be used as a beam collimator or a cylindrical-to-plane wave convertor with a much higher transmissivity than a zero-index metamaterial slab. The output beam shows good directionality in both near field and far field. A metamaterial structure is also designed to realize this device and verify its performance with finite element method (FEM).

© 2013 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

History
Original Manuscript: January 18, 2013
Revised Manuscript: February 18, 2013
Manuscript Accepted: March 4, 2013
Published: March 15, 2013

Citation
Fei Sun, Yun Gui Ma, Xiaochen Ge, and Sailing He, "Super-thin Mikaelian’s lens of small index as a beam compressor with an extremely high compression ratio," Opt. Express 21, 7328-7336 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036609 (2005). [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  5. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247 (2006). [CrossRef]
  6. U. Leonhardt and T. G. Philbin, Geometry and Light: Science of Invisibility (Dover, 2010).
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  8. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009). [CrossRef]
  9. H. Ma, S. Qu, Z. Xu, and J. Wang, “Using photon funnels based on metamaterial cloaks to compress electromagnetic wave beams,” Appl. Opt.47(23), 4193–4195 (2008). [CrossRef] [PubMed]
  10. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046608 (2004). [CrossRef] [PubMed]
  11. Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express18(16), 16587–16593 (2010). [CrossRef] [PubMed]
  12. V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009). [CrossRef] [PubMed]
  13. A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75(15), 155410 (2007). [CrossRef]
  14. A. L. Mikaelian, “Application of stratified medium for waves focusing,” Dokl. Akad. Nauk SSSR81, 569–571 (1951).
  15. A.L. Mikaelian, “Self-focusing medium with variable index of refraction,” in Progress in Optics XVII, 283–346 (1980).
  16. A. L. Mikaelian, “General method of inhomogeneous media calculation by the given ray traces,” Dokl. Akad. Nauk83(2), 219 (1952).
  17. R. Ilinsky, “Gradient-index meniscus lens free of spherical aberration,” J. Opt. A, Pure Appl. Opt.2(5), 449–451 (2000). [CrossRef]
  18. M. I. Kotlyar, Y. R. Triandaphilov, A. A. Kovalev, V. A. Soifer, M. V. Kotlyar, and L. O’Faolain, “Photonic crystal lens for coupling two waveguides,” Appl. Opt.48(19), 3722–3730 (2009). [CrossRef] [PubMed]
  19. V. V. Kotlyar, A. A. Kovalev, and V. A. Soifer, “Subwavelength focusing with a Mikaelian planar lens,” Opt. Mem. Neural. Networks19(4), 273–278 (2010). [CrossRef]
  20. Y. R. Triandaphilov and V. V. Kotlyar, “Photonic crystal Mikaelian lens,” Opt. Mem. Neural. Networks17(1), 1–7 (2008).
  21. D. V. Nesterenko, “Metal-dielectric Mikaelian’s lens,” Computer Optics35(1), 47 (2011) (in Russian; not accessible to the authors, but mentioned by a reviewer).
  22. H. Ma, S. Qu, Z. Xu, and J. Wang, “General method for designing wave shape transformers,” Opt. Express16(26), 22072–22082 (2008). [CrossRef] [PubMed]
  23. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008). [CrossRef] [PubMed]
  24. The finite element simulation is conducted by using commercial software COMSOL Multiphysics. http://www.comsol.com/ . The number of pixels per wavelength is larger than 20 in our simulation.
  25. M. Born and E. Wolf, Principles of Optics, 5th edition (Pergamon, 1975).
  26. Y. Jin and S. L. He, “Impedance-matched multilayered structure containing a zero-permittivity material for spatial filtering,” J. Nonlinear Opt. Phys. Mater.17(03), 349–355 (2008). [CrossRef]
  27. J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express18(1), 244–252 (2010). [CrossRef] [PubMed]
  28. Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, 1990).
  29. R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2), 026606 (2007). [CrossRef] [PubMed]
  30. F. J. Duarte and L. W. Hillman, Dye Laser Principles (Elsevier, 1990).
  31. F. J. Duarte, Tunable Laser Optics (Elsevier, 2003).
  32. W. X. Tang, Y. Hao, and F. Medina, “Broadband extraordinary transmission in a single sub-wavelength aperture,” Opt. Express18(16), 16946–16954 (2010). [CrossRef] [PubMed]
  33. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited