OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7343–7353

Design of cylindrical vector beams based on the rotating Glan polarizing prism

Qi Hu, Zhihua Tan, Xiaoyu Weng, Hanming Guo, Yang Wang, and Songlin Zhuang  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7343-7353 (2013)
http://dx.doi.org/10.1364/OE.21.007343


View Full Text Article

Enhanced HTML    Acrobat PDF (1429 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently the cylindrically polarized beams have been gained highly attention in the fields of particle manipulation, material processing, nanoscale imaging, etc. So the methods to create the cylindrically polarized beams become more important. Here, based on the principle of the Glan polarizing prism, we design two types of the structures of the cylindrical polarization analyzer that can convert directly a linearly or circularly polarized beam into various cylindrical vector beams. The key optical element in the cylindrical polarization analyzer is the cylindrical polarizing prism with unique structure. We demonstrate the operating principle and the feasibility of the fabrication of the cylindrical polarization analyzer in detail. Analyses show that the cylindrical polarization analyzer designed by us not only have novel structures and excellent characteristics, such as the compact and stabile structures, high extinction ratio, high polarization purity, no requirements on the mode and the wavelength of the incident light (only for the first type), not changing the intensity distribution of the incident light, and easily integrated into the optical systems, but also is easy to be fabricated, especially for the second type.

© 2013 OSA

OCIS Codes
(220.2740) Optical design and fabrication : Geometric optical design
(230.5440) Optical devices : Polarization-selective devices
(260.1180) Physical optics : Crystal optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: January 22, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 7, 2013
Published: March 15, 2013

Citation
Qi Hu, Zhihua Tan, Xiaoyu Weng, Hanming Guo, Yang Wang, and Songlin Zhuang, "Design of cylindrical vector beams based on the rotating Glan polarizing prism," Opt. Express 21, 7343-7353 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7343


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  3. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A24(6), 1793–1798 (2007). [CrossRef] [PubMed]
  4. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  5. Z. Zhang, J. Pu, and X. Wang, “Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal,” Appl. Opt.47(12), 1963–1967 (2008). [CrossRef] [PubMed]
  6. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  7. Y. J. Yoon, W. C. Kim, N. C. Park, K. S. Park, and Y. P. Park, “Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics,” Opt. Lett.34(13), 1961–1963 (2009). [CrossRef] [PubMed]
  8. S. Sato and Y. Kozawa, “Hollow vortex beams,” J. Opt. Soc. Am. A26(1), 142–146 (2009). [CrossRef] [PubMed]
  9. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express18(5), 4518–4525 (2010). [CrossRef] [PubMed]
  10. X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010). [CrossRef] [PubMed]
  11. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express20(14), 14891–14905 (2012). [CrossRef] [PubMed]
  12. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express19(17), 15947–15954 (2011). [CrossRef] [PubMed]
  13. B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Opt. Lett.36(11), 2014–2016 (2011). [CrossRef] [PubMed]
  14. Y. Kozawa and S. Sato, “Focusing of higher-order radially polarized Laguerre-Gaussian beam,” J. Opt. Soc. Am. A29(11), 2439–2443 (2012). [CrossRef] [PubMed]
  15. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  16. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012). [CrossRef] [PubMed]
  17. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004). [CrossRef]
  18. K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32(12), 1680–1682 (2007). [CrossRef] [PubMed]
  19. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007). [CrossRef]
  20. G. Terakado, K. Watanabe, and H. Kano, “Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system,” Appl. Opt.48(6), 1114–1118 (2009). [CrossRef]
  21. T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express19(14), 13351–13357 (2011). [CrossRef] [PubMed]
  22. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express20(16), 17653–17666 (2012). [CrossRef] [PubMed]
  23. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett.31(14), 2151–2153 (2006). [CrossRef] [PubMed]
  24. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett.30(22), 3063–3065 (2005). [CrossRef] [PubMed]
  25. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett.32(22), 3272–3274 (2007). [CrossRef] [PubMed]
  26. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001). [CrossRef]
  27. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt.29(15), 2234–2239 (1990). [CrossRef] [PubMed]
  28. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J. F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A22(5), 984–991 (2005). [CrossRef] [PubMed]
  29. P. Ma, P. Zhou, Y. Ma, X. Wang, R. Su, and Z. Liu, “Generation of azimuthally and radially polarized beams by coherent polarization beam combination,” Opt. Lett.37(13), 2658–2660 (2012). [CrossRef] [PubMed]
  30. R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express18(10), 10834–10838 (2010). [CrossRef] [PubMed]
  31. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32(24), 3549–3551 (2007). [CrossRef] [PubMed]
  32. S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystal polymers,” Opt. Express16(10), 7295–7308 (2008). [CrossRef] [PubMed]
  33. M. Bashkansky, D. Park, and F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express18(1), 212–217 (2010). [CrossRef] [PubMed]
  34. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt.41(22), 4630–4637 (2002). [CrossRef] [PubMed]
  35. K. J. Moh, X. C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt.46(30), 7544–7551 (2007). [CrossRef] [PubMed]
  36. A. Shoham, R. Vander, and S. G. Lipson, “Production of radially and azimuthally polarized polychromatic beams,” Opt. Lett.31(23), 3405–3407 (2006). [CrossRef] [PubMed]
  37. http://www.rpcphotonics.com/
  38. http://refractiveindex.info/?group=CRYSTALS&material=CaCO3

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited