OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7419–7426

Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments

Benjamin D. Mangum, Yagnaseni Ghosh, Jennifer A. Hollingsworth, and Han Htoon  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7419-7426 (2013)
http://dx.doi.org/10.1364/OE.21.007419


View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In single particle spectroscopy, the degree of observed fluorescence anti-bunching in a second-order cross correlation experiment is indicative of its bi-exciton quantum yield and whether or not a particle is well isolated. Advances in quantum dot synthesis have produced single particles with bi-exciton quantum yields approaching unity. Consequently, this creates uncertainty as to whether a particle has a high bi-exciton quantum yield or if it exists as a cluster. We report on a time-gated anti-bunching technique capable of determining the relative contributions of both multi-exciton emission and clustering effects. In this way, we can now unambiguously determine if a particle is single. Additionally, this time-gated anti-bunching approach provides an accurate way for the determination of bi-exciton lifetime with minimal contribution from higher order multi-exciton states.

© 2013 OSA

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Spectroscopy

History
Original Manuscript: December 21, 2012
Revised Manuscript: March 3, 2013
Manuscript Accepted: March 8, 2013
Published: March 18, 2013

Citation
Benjamin D. Mangum, Yagnaseni Ghosh, Jennifer A. Hollingsworth, and Han Htoon, "Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments," Opt. Express 21, 7419-7426 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Treussart, A. Clouqueur, C. Grossman, and J.-F. Roch, “Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film,” Opt. Lett.26(19), 1504–1506 (2001). [CrossRef] [PubMed]
  2. T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett.69(10), 1516–1519 (1992). [CrossRef] [PubMed]
  3. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature407(6803), 491–493 (2000). [CrossRef] [PubMed]
  4. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290(5500), 2282–2285 (2000). [CrossRef] [PubMed]
  5. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000). [CrossRef] [PubMed]
  6. A. Högele, C. Galland, M. Winger, and A. Imamoğlu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Phys. Rev. Lett.100(21), 217401 (2008). [CrossRef] [PubMed]
  7. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000). [CrossRef] [PubMed]
  8. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001). [CrossRef]
  9. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett.25(17), 1294–1296 (2000). [CrossRef] [PubMed]
  10. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques Chemical Physics (Springer, 2005).
  11. P. Tinnefeld, C. Müller, and M. Sauer, “Time-varying photon probability distribution of individual molecules at room temperature,” Chem. Phys. Lett.345(3-4), 252–258 (2001). [CrossRef]
  12. K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem.74(20), 5342–5349 (2002). [CrossRef] [PubMed]
  13. G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett.11(3), 1136–1140 (2011). [CrossRef] [PubMed]
  14. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett.87(18), 183601 (2001). [CrossRef]
  15. E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B62(16), 11038–11045 (2000). [CrossRef]
  16. B. Fisher, J. M. Caruge, D. Zehnder, and M. Bawendi, “Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals,” Phys. Rev. Lett.94(8), 087403 (2005). [CrossRef] [PubMed]
  17. Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy,” Phys. Rev. Lett.106(18), 187401 (2011). [CrossRef] [PubMed]
  18. Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, “Efficient biexciton emission in elongated CdSe/ZnS nanocrystals,” Nano Lett.11(10), 4370–4375 (2011). [CrossRef] [PubMed]
  19. R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett.102(19), 197401 (2009). [CrossRef] [PubMed]
  20. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000). [CrossRef] [PubMed]
  21. A. Shabaev, A. L. Efros, and A. J. Nozik, “Multiexciton generation by a single photon in nanocrystals,” Nano Lett.6(12), 2856–2863 (2006). [CrossRef] [PubMed]
  22. R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett.92(18), 186601 (2004). [CrossRef] [PubMed]
  23. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009). [CrossRef] [PubMed]
  24. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature439(7073), 179–182 (2006). [CrossRef] [PubMed]
  25. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996). [CrossRef]
  26. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys.112(7), 3117–3120 (2000). [CrossRef]
  27. C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature479(7372), 203–207 (2011). [CrossRef] [PubMed]
  28. S. Jander, A. Kornowski, and H. Weller, “Energy transfer from CdSe/CdS nanorods to amorphous carbon,” Nano Lett.11(12), 5179–5183 (2011). [CrossRef] [PubMed]
  29. J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett.104(15), 157403 (2010). [CrossRef] [PubMed]
  30. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, ““Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc.130(15), 5026–5027 (2008). [CrossRef] [PubMed]
  31. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000). [CrossRef] [PubMed]
  32. F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance,” Nano Lett.9(10), 3482–3488 (2009). [CrossRef] [PubMed]
  33. D. Canneson, I. Mallek-Zouari, S. Buil, X. Quelin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Enhancing the fluorescence of individual thick shell CdSe/CdS Nanocrystals by coupling to gold structures,” New J. Phys.14(6), 063035 (2012). [CrossRef]
  34. Due to very high QBX, then second g-NQD shows a bi-exponential decay even at very low pump power. The fast time constant of the PL decay 23.78 ns is in good agreement with 22.9ns τBX extracted from the decay of RTG.”
  35. Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, and J. A. Hollingsworth, “New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots,” J. Am. Chem. Soc.134(23), 9634–9643 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited