OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7456–7477

Wavelet-based decomposition of high resolution surface plasmon microscopy V (Z) curves at visible and near infrared wavelengths

E. Boyer-Provera, A. Rossi, L. Oriol, C. Dumontet, A. Plesa, L. Berguiga, J. Elezgaray, A. Arneodo, and F. Argoul  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7456-7477 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7857 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon resonance is conventionally conducted in the visible range and, during the past decades, it has proved its efficiency in probing molecular scale interactions. Here we elaborate on the first implementation of a high resolution surface plasmon microscope that operates at near infrared (IR) wavelength for the specific purpose of living matter imaging. We analyze the characteristic angular and spatial frequencies of plasmon resonance in visible and near IR lights and how these combined quantities contribute to the V (Z) response of a scanning surface plasmon microscope (SSPM). Using a space-frequency wavelet decomposition, we show that the V (Z) response of the SSPM for red (632.8 nm) and near IR (1550 nm) lights includes the frequential response of plasmon resonance together with additional parasitic frequencies induced by the objective pupil. Because the objective lens pupil profile is often unknown, this space-frequency decomposition turns out to be very useful to decipher the characteristic frequencies of the experimental V (Z) curves. Comparing the visible and near IR light responses of the SSPM, we show that our objective lens, primarily designed for visible light microscopy, is still operating very efficiently in near IR light. Actually, despite their loss in resolution, the SSPM images obtained with near IR light remain contrasted for a wider range of defocus values from negative to positive Z values. We illustrate our theoretical modeling with a preliminary experimental application to blood cell imaging.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.3080) Imaging systems : Infrared imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(110.3175) Imaging systems : Interferometric imaging
(110.7410) Imaging systems : Wavelets

ToC Category:

Original Manuscript: December 14, 2012
Revised Manuscript: January 29, 2013
Manuscript Accepted: January 29, 2013
Published: March 19, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

E. Boyer-Provera, A. Rossi, L. Oriol, C. Dumontet, A. Plesa, L. Berguiga, J. Elezgaray, A. Arneodo, and F. Argoul, "Wavelet-based decomposition of high resolution surface plasmon microscopy V (Z) curves at visible and near infrared wavelengths," Opt. Express 21, 7456-7477 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Otto, “Excitation of nonradiative surface plasmon waves in silver by the method of frustrated total reflection,” Z. Angew. Phys.410, 398–410 (1968).
  2. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excitated by light,” Z. Natur-forsch., A: Phys. Sci.23, 2135 (1968).
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Heidelberg, 1988).
  4. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem.73(1), 1–7 (2001). [CrossRef] [PubMed]
  5. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003). [CrossRef] [PubMed]
  6. P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sens. Actuators, A85(1–3), 189–193 (2000).
  7. A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett.76(13), 1665–1667 (2000). [CrossRef]
  8. A. N. Grigorenko, A. A. Beloglazov, and P. I. Nikitin, “Dark-field surface plasmon resonance microscopy,” Opt. Commun.174(January), 151–155 (2000). [CrossRef]
  9. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B: Condens. Matter33(8), 5186–5201 (1986). [CrossRef]
  10. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. A15(4), 1381–1386 (1998). [CrossRef]
  11. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun.182(August), 11–15 (2000). [CrossRef]
  12. G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc.214(Pt 3), 328–333 (2004). [CrossRef]
  13. J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, “Wide-field surface plasmon microscopy with solid immersion excitation,” Appl. Phys. Lett.85(22), 5451–5453 (2004). [CrossRef]
  14. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “Optical V(z) for high-resolution 2π surface plasmon microscopy,” Opt. Lett.25(11), 823–825 (2000). [CrossRef]
  15. L. Berguiga, S. Zhang, F. Argoul, and J. Elezgaray, “High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions,” Opt. Lett.32(5), 509–511 (2007). [CrossRef] [PubMed]
  16. M. G. Somekh, G. Stabler, S. Liu, J. Zhang, and C. W. See, “Wide field high resolution surface plasmon interference microscopy,” Opt. Lett.34(20), 3110–3112 (2009). [CrossRef] [PubMed]
  17. T. Roland, L. Berguiga, J. Elezgaray, and F. Argoul, “Scanning surface plasmon imaging of nanoparticles,” Phys. Rev. B: Condens. Matter81(23), 235,419 (2010). [CrossRef]
  18. J. Elezgaray, T. Roland, L. Berguiga, and F. Argoul, “Modeling of the scanning surface plasmon microscope,” J. Opt. Soc. Am. A27(3), 450–457 (2010). [CrossRef]
  19. L. Berguiga, T. Roland, K. Monier, J. Elezgaray, and F. Argoul, “Amplitude and phase images of cellular structures with a scanning surface plasmon microscope,” Opt. Express19(7), 2829–2836 (2011). [CrossRef]
  20. J. Elezgaray and F. Argoul, “Topography reconstruction from surface plasmon resonance data,” J. Opt. A: Pure Appl. Opt.7(9), 472–478 (2005). [CrossRef]
  21. T. Roland, A. Khalil, A. Tanenbaum, L. Berguiga, P. Delichère, L. Bonneviot, J. Elezgaray, A. Arneodo, and F. Argoul, “Revisiting the physical processes of vapodeposited thin gold films on chemically modified glass by atomic force and surface plasmon microscopies,” Surf. Sci.603(22), 3307–3320 (2009). [CrossRef]
  22. S. Zhang, L. Berguiga, J. Elezgaray, N. Hugo, W. Li, T. Roland, H. Zeng, and F. Argoul, “Advances in surface plasmon resonance-based high throughput biochips,” Frontiers of Physics in China4(4), 469–480 (2009). [CrossRef]
  23. J. Elezgaray, L. Berguiga, and F. Argoul, “Optimization of branched resonant nanostructures illuminated by a strongly focused beam,” Appl. Phys. Lett.97(24), 243,103 (2010). [CrossRef]
  24. F. Argoul, K. Monier, T. Roland, J. Elezgaray, and L. Berguiga, “High resolution surface plasmon microscopy for cell imaging,” in SPIE Proc. Biophotonics: Photonic Solutions for Better Health Care II, p. 771506 (2010). [CrossRef]
  25. F. Argoul, T. Roland, A. Fahys, L. Berguiga, and J. Elezgaray, “Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution,” C. R. Phys.13(8), 800–814 (2012). [CrossRef]
  26. L. Berguiga, E. Boyer-Provera, J. Elezgaray, and F. Argoul, “Sensing nanometer depth of focused optical fields with scanning surface plasmon microscopy,” Plasmonics, in press (2012). [CrossRef]
  27. V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: Studies of phospholipid membrane growth,” J. Appl. Phys.98(9), 093,506 (2005). [CrossRef]
  28. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Appl. Opt.42(34), 6905–6909 (2003). [CrossRef] [PubMed]
  29. S. Patskovsky, M. Vallieres, M. Maisonneuve, I.-H. Song, M. Meunier, and A. V. Kabashin, “Designing efficient zero calibration point for phase-sensitive surface plasmon resonance biosensing,” Opt. Express17(4), 2255–2263 (2009). [CrossRef] [PubMed]
  30. J. Le Person, F. Colas, C. Compère, M. Lehaitre, M.-L. Anne, C. Boussard-Plédel, B. Bureau, J.-L. Adam, S. Deputier, and M. Guilloux-Viry, “Surface plasmon resonance in chalcogenide glass-based optical system,” Sens. Actuators, B130(2), 771–776 (2008). [CrossRef]
  31. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett.34(6), 749–751 (2009). [CrossRef] [PubMed]
  32. R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A: Pure Appl. Opt.11(4), 045,502 (2009). [CrossRef]
  33. M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys.105(10), 102,036 (2009). [CrossRef]
  34. V. Yashunsky, S. Shimron, V. Lirtsman, A. M. Weiss, N. Melamed-Book, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of transferrin-induced endocytic vesicle formation by mid-infrared surface plasmon resonance.” Biophys. J.97(4), 1003–1012 (2009). [CrossRef] [PubMed]
  35. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B: Condens. Matter6(12), 4370–4379 (1972). [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 7th edition, 1999).
  37. A. Atalar, “An angular-spectrum approach to contrast in reflection acoustic microscopy,” J. Appl. Phys.40, 5130–5139 (1978). [CrossRef]
  38. A. Atalar, “A physical model for acoustic signatures,” J. Appl. Phys.50, 8237–8239 (1979). [CrossRef]
  39. C. Ilett, M. Somekh, and G. Briggs, “Acoustic microscopy of elastic discontinuities,” Proc. Roy. Soc. Lond. Ser. A393, 171–183 (1984). [CrossRef]
  40. B. Zhang, S. Pechprasarn, J. Zhang, and M. G. Somekh, “Confocal surface plasmon microscopy with pupil function engineering.” Opt. Express20(7), 7388–97 (2012). [CrossRef] [PubMed]
  41. P. Goupillaud, A. Grossmann, and J. Morlet, “Cycle-octave and related transforms in seismic signal analysis,” Geoexploration23, 85–102 (1984). [CrossRef]
  42. A. Grossmann and J. Morlet, “Decomposition of Hardy functions into square integrable wavelets of constant shape,” SIAM J. Math. Anal.15(4), 723–736 (1984). [CrossRef]
  43. J. M. Combes, A. Grossmann, and P. Tchamitchian, eds., Wavelets (Springer, Germany, 1989). [CrossRef]
  44. I. Daubechies, Ten Lecture on Wavelets (SIAM, 1992). [CrossRef]
  45. Y. Meyer, ed., Wavelets and their Applications (Springer, Germany, 1992).
  46. M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, and L. Raphael, eds., Wavelets and their Applications (Jones and Bartlett, Boston, 1992).
  47. P. Flandrin, Temps-Fréquence (Hermès, France1993).
  48. Y. Meyer and S. Roques, eds., Progress in Wavelets Analysis and Applications (Editions Frontières, Gif-sur-Yvette, 1993).
  49. A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray, and J. F. Muzy, Ondelettes, Multifractales et Turbulences: de l’ADN aux croissances cristallines (Diderot Editeur, Art et Sciences, Paris, 1995).
  50. A. Arneodo, E. Bacry, and J. F. Muzy, “The thermodynamics of fractals revisited with wavelets,” Physica A213(1–2), 232–275 (1995). [CrossRef]
  51. G. Erlebacher, M. Y. Hussaini, and L. M. Jameson, eds., Wavelets: Theory and Applications (Oxford University, 1996).
  52. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, USA, 1998).
  53. B. Torresani, Analyse Continue par Ondelettes (Editions de Physique, France, 1998).
  54. A. Arneodo, N. Decoster, P. Kesterner, and S. G. Roux, “A wavelet-based method for multifractal image analysis: from theoretical concepts to experimental applications,” Advanced in Imaging and Electron Physics126, 1–92 (2003). [CrossRef]
  55. P. Kestener and A. Arneodo, “Generalizing the wavelet-based multifractal formalism to random vector fields: Application to three-dimensional turbulence velocity and vorticity data,” Phys. Rev. Lett.93(4), 044,501 (2004). [CrossRef]
  56. J. P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge University, UK, 2008).
  57. A. Arneodo, B. Audit, and P. Kestener, “Wavelet-based multifractal analysis,” Scholarpedia3, 4103 (2008). [CrossRef]
  58. A. Arneodo, C. Vaillant, B. Audit, F. Argoul, Y. DAubenton-Carafa, and C. Thermes, “Multi-scale coding of genomic information: From DNA sequence to genome structure and function,” Physics Reports498(2–3), 45–188 (2011). [CrossRef]
  59. E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett.64(7), 745–748 (1990). [CrossRef] [PubMed]
  60. J. F. Muzy, B. Pouligny, E. Freysz, F. Argoul, and A. Arneodo, “Optical-diffraction measurement of fractal dimensions and f(α) spectrum,” Phys. Rev. A: At. Mol. Opt. Phys.45(12), 8961–8964 (1992). [CrossRef]
  61. J. Morlet, G. Arenss, E. Fourgeau, and D. Giard, “Wave propagation and sampling theory-Part I: Complex signal and scattering in multilayered media,” Geophysics47(2), 203–221 (1982). [CrossRef]
  62. J. Morlet, G. Arensz, E. Fourgeau, and D. Giard, “Wave propagation and sampling theory-Part II: Sampling theory and complex waves,” Geophysics41(2), 222–236 (1982). [CrossRef]
  63. K. Watanabe, G. Terakado, and H. Kano, “Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam,” Opt. Lett.34(8), 1180–1182 (2009). [CrossRef] [PubMed]
  64. R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett.34(1), 37–39 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited