OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7511–7520

Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion

Xiao-Liang Zhang, Zhi-Bo Liu, Xiao-Chun Li, Qiang Ma, Xu-Dong Chen, Jian-Guo Tian, Yan-Fei Xu, and Yong-Sheng Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7511-7520 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp2- hybridized carbon domains and sp3- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: December 20, 2012
Revised Manuscript: February 22, 2013
Manuscript Accepted: February 28, 2013
Published: March 19, 2013

Xiao-Liang Zhang, Zhi-Bo Liu, Xiao-Chun Li, Qiang Ma, Xu-Dong Chen, Jian-Guo Tian, Yan-Fei Xu, and Yong-Sheng Chen, "Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion," Opt. Express 21, 7511-7520 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  2. D. Li and R. B. Kaner, “Materials science. graphene-based materials,” Science320(5880), 1170–1171 (2008). [CrossRef] [PubMed]
  3. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. Engl.48(42), 7752–7777 (2009). [CrossRef] [PubMed]
  4. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  5. G. C. Xing, H. C. Guo, X. H. Zhang, T. C. Sum, and C. H. A. Huan, “The Physics of ultrafast saturable absorption in graphene,” Opt. Express18(5), 4564–4573 (2010). [CrossRef] [PubMed]
  6. H. Z. Yang, X. B. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11(7), 2622–2627 (2011). [CrossRef] [PubMed]
  7. Z. B. Liu, Y. Wang, X. L. Zhang, Y. F. Xu, Y. S. Chen, and J. G. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett.94(2), 021902 (2009). [CrossRef]
  8. Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2-and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett.2(16), 1972–1977 (2011). [CrossRef]
  9. X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett.3(6), 785–790 (2012). [CrossRef]
  10. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater.21(23), 2430–2435 (2009). [CrossRef]
  11. M. Feng, H. B. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett.96(3), 033107 (2010). [CrossRef]
  12. X. L. Zhang, X. Zhao, Z. B. Liu, S. Shi, W. Y. Zhou, J. G. Tian, Y. F. Xu, and Y. S. Chen, “Nonlinear optical and optical limiting properties of graphene oxide–Fe3O4 hybrid material,” J. Opt.13(7), 075202 (2011). [CrossRef]
  13. R. Wu, Y. L. Zhang, S. C. Yan, F. Bian, W. L. Wang, X. D. Bai, X. H. Lu, J. M. Zhao, and E. G. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11(12), 5159–5164 (2011). [CrossRef] [PubMed]
  14. A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zboril, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett.543, 101–105 (2012). [CrossRef]
  15. H. Zhang, S. Virally, Q. L. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012). [CrossRef] [PubMed]
  16. V. Nalla, L. Polavarapu, K. K. Manga, B. M. Goh, K. P. Loh, Q. H. Xu, and W. Ji, “Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite,” Nanotechnology21(41), 415203 (2010). [CrossRef] [PubMed]
  17. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339–1339 (1958). [CrossRef]
  18. H. A. Becerril, J. Mao, Z. F. Liu, R. M. Stoltenberg, Z. N. Bao, and Y. S. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008). [CrossRef] [PubMed]
  19. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  20. J. Wang and W. J. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B91(3–4), 521–524 (2008). [CrossRef]
  21. X. Q. Yan, Z. B. Liu, Y. S. Chen, and J. G. Tian, “Polarization characteristics of nonlinear refraction and nonlinear scattering in several solvents,” J. Opt. Soc. Am. B29(10), 2721–2728 (2012). [CrossRef]
  22. G. L. Mao, Y. H. Wu, and K. D. Singer, “Third harmonic generation in self-focused filaments in liquids,” Opt. Express15(8), 4857–4862 (2007). [CrossRef] [PubMed]
  23. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002). [CrossRef] [PubMed]
  24. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater.22(4), 505–509 (2010). [CrossRef] [PubMed]
  25. X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett.98(12), 121905 (2011). [CrossRef]
  26. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).
  27. J. Y. Yang, Y. L. Song, J. H. Gu, and H. G. Zheng, “determinations of the transient thermal lensing effect in metal cluster Polymer {WS4Cu4I2(bpe)3}n solution by the use of the Z-scan,” Opt. Commun.282(1), 122–125 (2009). [CrossRef]
  28. D. I. Kovsh, D. J. Hagan, and E. W. Van Stryland, “Numerical modeling of thermal refraction inliquids in the transient regime,” Opt. Express4(8), 315–327 (1999). [CrossRef] [PubMed]
  29. D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical Limiting,” Appl. Opt.38(24), 5168–5180 (1999). [CrossRef] [PubMed]
  30. M. Yüksek, T. Ceyhan, F. Bağcı, H. G. Yağlıoğlu, A. Elmali, and Ö. Bekaroğlu, “The nonlinear refraction and absorption dependence on the thermal effect for 4 ns pulse duration in binuclear Zn(II) phthalocyanine solution,” Opt. Commun.281(14), 3897–3901 (2008). [CrossRef]
  31. P. Brochard, V. G. Mazza, and R. Cabanel, “Thermal nonlinear refraction in dye solutions:a study of the transient regime,” J. Opt. Soc. Am. B14(2), 405–414 (1997). [CrossRef]
  32. Z. B. Liu, W. Y. Zhou, J. G. Tian, S. Q. Chen, W. P. Zang, F. Song, and C. P. Zhang, “characteristics of co-existence of third-order and transient thermally induced optical nonlinearities in nanosecond regime,” Opt. Commun.245(1–6), 377–382 (2005). [CrossRef]
  33. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B9(3), 405–414 (1992). [CrossRef]
  34. G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater.22(22), 2392–2415 (2010). [CrossRef] [PubMed]
  35. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater.22(40), 4467–4472 (2010). [CrossRef] [PubMed]
  36. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mostrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19(16), 2577–2583 (2009). [CrossRef]
  37. C. Mathioudakis, G. Kopidakis, P. C. Kelires, P. Patsalas, M. Gioti, and S. Logothetidis, “Electronic and optical properties of a-C from tight-binding molecular dynamics simulations,” Thin Solid Films482(1–2), 151–155 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited