OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7538–7548

Interplay between electric and magnetic effect in adiabatic polaritonic systems

Alessandro Alabastri, Andrea Toma, Carlo Liberale, Manohar Chirumamilla, Andrea Giugni, Francesco De Angelis, Gobind Das, Enzo Di Fabrizio, and Remo Proietti Zaccaria  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7538-7548 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator.

© 2013 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: January 10, 2013
Revised Manuscript: February 28, 2013
Manuscript Accepted: March 1, 2013
Published: March 19, 2013

Alessandro Alabastri, Andrea Toma, Carlo Liberale, Manohar Chirumamilla, Andrea Giugni, Francesco De Angelis, Gobind Das, Enzo Di Fabrizio, and Remo Proietti Zaccaria, "Interplay between electric and magnetic effect in adiabatic polaritonic systems," Opt. Express 21, 7538-7548 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004). [CrossRef] [PubMed]
  2. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1998).
  3. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97, 146102 (2006). [CrossRef] [PubMed]
  4. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays,” Opt. Express17, 3603–3609 (2009). [CrossRef] [PubMed]
  5. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterials as broadband circular polarizer,” Science325, 1513–1515 (2009). [CrossRef] [PubMed]
  6. J. Song, R. Proietti Zaccaria, G. Dong, E. Di Fabrizio, M. B. Yu, and G. Q. Lo, “Evolution of modes in a metal-coated nano-fiber,” Opt. Express19, 25206–25221 (2011). [CrossRef]
  7. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett.107, 257401 (2011). [CrossRef]
  8. L. Razzari, A. Toma, M. Shalaby, M. Clerici, R. Proietti Zaccaria, C. Liberale, S. Marras, I.A.I. Al-Naib, G. Das, F. De Angelis, M. Peccianti, A. Falqui, T. Ozaki, R. Morandotti, and E. Di Fabrizio, “Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas,” Opt. Express19, 26088–26094 (2011). [CrossRef]
  9. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. Proietti Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photon.5, 682–687 (2011). [CrossRef]
  10. S. V. Boriskina and M. R. Bjorn, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012). [CrossRef]
  11. N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun.253, 118–124 (2005). [CrossRef]
  12. P. Corio, S. D.M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B61, 13202–13211 (2000). [CrossRef]
  13. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett.8, 2321–2327 (2008). [CrossRef] [PubMed]
  14. W. Zhang, X. Cui, and O. J. F. Martin, “Local field enhancement of an infinite conical metal tip illuminated by a focused beam,” J. Raman Spectrosc.40, 1338–1342 (2009). [CrossRef]
  15. T. J. Davis, D. E. Gomez, and K. C. Vernon, “Evanescent coupling between a Raman-active molecule and surface plasmons in ensembles of metallic nanoparticles,” Phys. Rev. B82, 205434 (2010). [CrossRef]
  16. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotech.5, 67–72 (2010). [CrossRef]
  17. P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film,” Phys. Rev. B81, 125441 (2010). [CrossRef]
  18. B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano5, 5945–5956 (2011). [CrossRef] [PubMed]
  19. M. I. Haftel, C. Schlockermann, and G. Blumberg, “Role of cylindrical surface plasmons in enhanced transmission,” Appl. Phys. Lett.88, 193104 (2006). [CrossRef]
  20. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  21. T. Sondergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: scattering and field enhancements,” Phys. Rev. B75, 073402 (2007). [CrossRef]
  22. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express15, 7439–7447 (2007). [CrossRef] [PubMed]
  23. G. W. Bryant, F. J. Garca de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008). [CrossRef] [PubMed]
  24. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express16, 16529–16537 (2008). [CrossRef] [PubMed]
  25. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000). [CrossRef]
  26. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A340, 299–302 (2005). [CrossRef]
  27. L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dandliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett.83, 584–586 (2003). [CrossRef]
  28. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A75, 063822 (2007). [CrossRef]
  29. C. C. Neacsu, S. Bergewer, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10, 592–596 (2010). [CrossRef] [PubMed]
  30. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104, 034311 (2008). [CrossRef]
  31. J. S. Lee, S. Han, J. Shirdel, S. Koo, D. Sadiq, C. Lienau, and N. Park, “Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method,” Opt. Express19, 12342–12347 (2011). [CrossRef] [PubMed]
  32. R. Proietti Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86, 035410 (2012). [CrossRef]
  33. A. D. Rakic, A. B. Djuriic, J.M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998). [CrossRef]
  34. S. A. Mayer, Plasmonics: Fundamentals and Applications (Springer, 2007).
  35. D. Sarid and W. Challener, Modern introduction to Surface Plasmons (Cambridge University Press, 2010).
  36. The Drude-Lorentz model is a commonly adopted method to describe the interaction between a metallic medium and an electromagnetic field. The model itself does not require the definition of any wave vector k⃗, but it just assumes the presence of an oscillating electric field. Ought to this aspect, we will exploit the Drude-Lorentz model in all our numerical analysis except the ES case.
  37. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67, 113103 (2003). [CrossRef]
  38. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonator for local field enhancement,” J. Appl. Phys.94, 4632 (2003). [CrossRef]
  39. C. Huang, X. Yin, H. Huang, and Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express17, 6407–6413 (2009). [CrossRef] [PubMed]
  40. F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19, 22268–22279 (2011). [CrossRef] [PubMed]
  41. R. Proietti Zaccaria, F. De Angelis, A. Toma, L. Razzari, A. Alabastri, G. Das, C. Liberale, and E. Di Fabrizio, “Surface plasmon polariton compression through radially and linearly polarized source,” Opt. Lett.37, 545–547 (2012). [CrossRef]
  42. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011). [CrossRef] [PubMed]
  43. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006). [CrossRef]
  44. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95, 223902 (2005). [CrossRef] [PubMed]
  45. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106, 226802 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited