OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7549–7559

Toward real-time quantum imaging with a single pixel camera

B. J. Lawrie and R. C. Pooser  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7549-7559 (2013)
http://dx.doi.org/10.1364/OE.21.007549


View Full Text Article

Enhanced HTML    Acrobat PDF (1752 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. In low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imaging with sensitivity below the photon shot noise limit.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

History
Original Manuscript: January 14, 2013
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 8, 2013
Published: March 19, 2013

Citation
B. J. Lawrie and R. C. Pooser, "Toward real-time quantum imaging with a single pixel camera," Opt. Express 21, 7549-7559 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008). [CrossRef] [PubMed]
  2. Q. Glorieux, J. B. Clark, A. M. Marino, Z. Zhou, and P. D. Lett, “Temporally multiplexed storage of images in a gradient echo memory,” Opt. Express20, 12350–12358 (2012). [CrossRef] [PubMed]
  3. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012). [CrossRef]
  4. J. B. Clark, Z. Zhou, Q. Glorieux, A. M. Marino, and P. D. Lett, “Imaging using quantum noise properties of light,” Opt. Express20, 17050–17058 (2012). [CrossRef]
  5. E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008). [CrossRef]
  6. V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008). [CrossRef] [PubMed]
  7. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett.109, 043602 (2012). [CrossRef] [PubMed]
  8. M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85, 3789–3792 (2000). [CrossRef] [PubMed]
  9. M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007). [CrossRef] [PubMed]
  10. G. Brida, M. Genovese, and I. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010). [CrossRef]
  11. O. Aytür and P. Kumar, “Squeezed-light generation with a mode-locked q-switched laser and detection by using a matched local oscillator,” Opt. Lett.17, 529–531 (1992). [CrossRef] [PubMed]
  12. D. Smithey, M. Beck, M. Belsley, and M. Raymer, “Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,” Phys. Rev. Lett.69, 2650–2653 (1992). [CrossRef] [PubMed]
  13. L. Jiying, Z. Jubo, L. Chuan, and H. Shisheng, “High-quality quantum-imaging algorithm and experiment based on compressive sensing,” Opt. Lett.35, 1206–1208 (2010). [CrossRef] [PubMed]
  14. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” App. Phys. Lett.95, 131110 (2009). [CrossRef]
  15. P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A84, 061804 (2011). [CrossRef]
  16. T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using structurally random matrices,” IEEE Trans. Signal Process.60, 139–154 (2012). [CrossRef]
  17. D. Smith, J. Gore, T. Yankeelov, and E. Welch, “Real-time compressive sensing MRI reconstruction using GPU computing and split bregman methods,” Int. J. of Biomed. Imag.2012, 864827 (2012).
  18. R. Pooser, B. Lawrie, and W. Grice, “Compressive sampling low light beam profiler using structural random matrices with a semilocal randomizer,” In Preparation.
  19. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006). [CrossRef]
  20. M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Process1, 586 –597 (2007). [CrossRef]
  21. C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Tech. Rep. TR12-13, Computational and Applied Mathematics, Rice University, Houston, TX, (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3232 KB)      QuickTime
» Media 2: AVI (242 KB)      QuickTime
» Media 3: AVI (2255 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited