OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7560–7569

Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating

Xiaona Yan, Ye Dai, Zixuan Gao, Yuanyuan Chen, Xihua Yang, and Guohong Ma  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7560-7569 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the modified Kogelnik’s coupled-wave theory, time- and frequency-domain diffractions of a femtosecond pulse from transmitted volume holographic gratings (VHGs) are theoretically studied. Results show that when the refractive index modulation of the VHG changes in a certain range, the number of temporal diffracted pulse will evolve from one to two, then to three, and this pulse number evolution is periodic. This particular phenomenon can be explained by diffraction intensity spectrum and the overmodulation effect of refractive index modulation of transmitted VHG. Moreover, we find centers of all temporal diffracted pulses translate along the negative time axis, and the translation is irrelevant to the refractive index modulations. We will use time delay of volume grating to give a reasonable explanation.

© 2013 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.7330) Diffraction and gratings : Volume gratings
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

Original Manuscript: January 15, 2013
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 12, 2013
Published: March 19, 2013

Xiaona Yan, Ye Dai, Zixuan Gao, Yuanyuan Chen, Xihua Yang, and Guohong Ma, "Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating," Opt. Express 21, 7560-7569 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. K. Gaylord, T. A. Rabson, F. K. Tittel, and C. R. Quick, “Pulsed writing of solid state holograms,” Appl. Opt.12(2), 414–415 (1973). [CrossRef] [PubMed]
  2. P. Shah, T. A. Rabson, F. K. Tittel, and T. K. Gaylord, “Volume holographic recording and storage in Fe-doped LiNbO3 using optical pulses,” Appl. Phys. Lett.24(3), 130–131 (1974). [CrossRef]
  3. C. T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3:Fe using optical pulses,” Appl. Phys. Lett.34(5), 321–324 (1979). [CrossRef]
  4. G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron.19(11), 1637–1645 (1983). [CrossRef]
  5. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron.19(3), 161–237 (1995). [CrossRef]
  6. Y. Ding, D. D. Nolte, Z. Zheng, A. Kanan, A. M. Weiner, and G. A. Brost, “Bandwidth study of volume holography in photorefractive InP:Fe for femtosecond pulse readout at 1.5 μm,” J. Opt. Soc. Am. B15(11), 2763–2768 (1998). [CrossRef]
  7. X. Yan, B. Yang, and B. Yu, “Diffraction study of photorefractive hologram under ultrashort pulse readout,” Optik (Stuttg.)115(11-12), 512–516 (2004). [CrossRef]
  8. B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol.40(7), 906–911 (2008). [CrossRef]
  9. Y. Yi, D. Liu, and H. Liu, “Instantaneous characteristics study of the diffracted and transmitted light of a static photorefractive reflection volume holographic grating read by an ultrashort pulse laser,” J. Opt.13(3), 035701 (2011). [CrossRef]
  10. C. Wang, L. Liu, A. Yan, D. Liu, D. Li, and W. Qu, “Pulse shaping properties of volume holographic gratings in anisotropic media,” J. Opt. Soc. Am. A23(12), 3191–3196 (2006). [CrossRef] [PubMed]
  11. A. Yan, L. Liu, Y. Zhi, D. Liu, and J. Sun, “Bragg diffraction of multiplayer volume holographic gratings under ultrashort laser pulse readout,” J. Opt. Soc. Am. A26(1), 135–141 (2009). [CrossRef]
  12. A. Yan, L. Liu, L. Wang, D. Liu, J. Sun, and L. Wan, “Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings,” Appl. Phys. B96(1), 71–77 (2009). [CrossRef]
  13. M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Bañares, “Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses,” Opt. Express19(2), 1516–1527 (2011). [CrossRef] [PubMed]
  14. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett.26(8), 557–559 (2001). [CrossRef] [PubMed]
  15. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett.25(23), 1693–1695 (2000). [CrossRef] [PubMed]
  16. L. A. Siiman, J. Lumeau, L. Canioni, and L. B. Glebov, “Ultrashort laser pulse diffraction by transmitting volume Bragg gratings in photo-thermo-refractive glass,” Opt. Lett.34(17), 2572–2574 (2009). [CrossRef] [PubMed]
  17. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).
  18. T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett.86(25), 251103 (2005). [CrossRef]
  19. S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett.96(5), 057403 (2006). [CrossRef] [PubMed]
  20. M. S. Luo, S. L. Chuang, P. C. Planken, I. Brener, and M. C. Nuss, “Coherent double-pulse control of quantum beats in a coupled quantum well,” Phys. Rev. B Condens. Matter48(15), 11043–11050 (1993). [CrossRef] [PubMed]
  21. D. Felinto, C. A. C. Bosco, L. H. Acioli, and S. S. Vianna, “Accumulative effects in temporal coherent control,” Phys. Rev. A64(6), 063413 (2001). [CrossRef]
  22. C. Iaconis and I. A. Walmsley, “Self-Referencing spectral interferometry for measuring ultrashort optical pulse,” IEEE J. Quantum Electron.35(4), 501–509 (1999). [CrossRef]
  23. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
  24. C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt.3(6), 504–513 (2001). [CrossRef]
  25. S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun.215(4-6), 263–269 (2003). [CrossRef]
  26. D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. (Berl.)8(2), 85–100 (1975). [CrossRef]
  27. S. H. Lin, K. Y. Hsu, and P. Yeh, “Experimental observation of the slowdown of optical beams by a volume-index grating in a photorefractive LiNbO3 crystal,” Opt. Lett.25(21), 1582–1584 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited