OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7614–7632

Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption

Mohamed A. K. Othman, Caner Guclu, and Filippo Capolino  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7614-7632 (2013)
http://dx.doi.org/10.1364/OE.21.007614


View Full Text Article

Enhanced HTML    Acrobat PDF (2126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a novel implementation of hyperbolic metamaterial (HM) at far-infrared frequencies composed of stacked graphene sheets separated by thin dielectric layers. Using the surface conductivity model of graphene, we derive the homogenization formula for the multilayer structure by treating graphene sheets as lumped layers with complex admittances. Homogenization results and limits are investigated by comparison with a transfer matrix formulation for the HM constituent layers. We show that infrared iso-frequency wavevector dispersion characteristics of the proposed HM can be tuned by varying the chemical potential of the graphene sheets via electrostatic biasing. Accordingly, reflection and transmission properties for a film made of graphene-dielectric multilayer are tunable at terahertz frequencies, and we investigate the limits in using the homogenized model compared to the more accurate transfer matrix model. We also propose to use graphene-based HM as a super absorber for near-fields generated at its surface. The power emitted by a dipole near the surface of a graphene-based HM is increased dramatically (up to 5 × 102 at 2 THz), furthermore we show that most of the scattered power is directed into the HM. The validity and limits of the homogenized HM model are assessed also for near-fields and show that in certain conditions it overestimates the dipole radiated power into the HM.

© 2013 OSA

OCIS Codes
(230.4170) Optical devices : Multilayers
(240.0310) Optics at surfaces : Thin films
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: January 2, 2013
Revised Manuscript: February 12, 2013
Manuscript Accepted: March 3, 2013
Published: March 20, 2013

Citation
Mohamed A. K. Othman, Caner Guclu, and Filippo Capolino, "Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption," Opt. Express 21, 7614-7632 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7614


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, NJ, 1973).
  2. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003). [CrossRef] [PubMed]
  3. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B86, 205130 (2012). [CrossRef]
  4. Y. Guo, W. Newman, C. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Opto-Electron.2012, 452502 (2012).
  5. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101, 131106 (2012). [CrossRef]
  6. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012). [CrossRef]
  7. I. Smolyaninov and E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105, 67402 (2010). [CrossRef]
  8. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36, 2530–2532 (2011). [CrossRef] [PubMed]
  9. T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012). [CrossRef]
  10. J. Pendry and S. Ramakrishna, “Refining the perfect lens,” Physica B: Condensed Matter338, 329 – 332 (2003). [CrossRef]
  11. K. J. Webb and M. Yang, “Subwavelength imaging with a multilayer silver film structure,” Opt. Lett.31, 2130–2132 (2006). [CrossRef] [PubMed]
  12. T. Tumkur, L. Gu, J. Kitur, E. Narimanov, and M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103–161103 (2012). [CrossRef]
  13. A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86, 035148 (2012). [CrossRef]
  14. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012). [CrossRef]
  15. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” PNAS109, 8834–8838 (2012). [CrossRef] [PubMed]
  16. J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012). [CrossRef] [PubMed]
  17. G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.4, 295–297 (2010). [CrossRef]
  18. C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett.37, 3345–3347 (2012). [CrossRef]
  19. A. Vakil and N. Engheta, “One-atom-thick reflectors for surface plasmon polariton surface waves on graphene,” Opt. Comm.285, 3428 – 3430 (2012). [CrossRef]
  20. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol.7, 91–99 (2008). [CrossRef]
  21. G. W. Hanson, A. B. Yakovlev, and A. Mafi, “Excitation of discrete and continuous spectrum for a surface conductivity model of graphene,” J. Appl. Phys.110, 114305 (2011). [CrossRef]
  22. M. Tamagnone, J. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys.112, 114915 (2012). [CrossRef]
  23. B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109, 073901 (2012). [CrossRef] [PubMed]
  24. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87, 075416 (2013). [CrossRef]
  25. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86, 121108 (2012). [CrossRef]
  26. V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum hall effect in graphene,” Phys. Rev. Lett.95, 146801 (2005). [CrossRef] [PubMed]
  27. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008). [CrossRef] [PubMed]
  28. L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012). [CrossRef]
  29. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  30. C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009). [CrossRef]
  31. X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2008). [CrossRef]
  32. C. S. R. Kaipa, G. W. P. Y. R. Yakovlev, Alexander Hanson, M. F. Medina, and F., “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B85, 245407 (2012). [CrossRef]
  33. S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012). [CrossRef] [PubMed]
  34. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B86, 195408 (2012). [CrossRef]
  35. D. Sounas and C. Caloz, “Gyrotropy and nonreciprocity of graphene for microwave applications,” IEEE Trans. Microw. Theory Techn.60, 901 –914 (2012). [CrossRef]
  36. D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett.98, 021911 (2011). [CrossRef]
  37. G. Lovat, “Equivalent circuit for electromagnetic interaction and transmission through graphene sheets,” IEEE Trans. Electromagn. Compat.54, 101 –109 (2012). [CrossRef]
  38. J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett.98, 101901 (2011). [CrossRef]
  39. C. S. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18, 13309–13320 (2010). [CrossRef] [PubMed]
  40. Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B84, 035108 (2011). [CrossRef]
  41. C. S. R. Kaipa, A. B. Yakovlev, F. Medina, and F. Mesa, “Transmission through stacked 2d periodic distributions of square conducting patches,” J. Appl. Phys.112, 033101 (2012). [CrossRef]
  42. X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011). [CrossRef]
  43. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  44. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B75, 165407 (2007). [CrossRef]
  45. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008). [CrossRef]
  46. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B48, 11385–11389 (1993). [CrossRef]
  47. Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007). [CrossRef]
  48. D. Pozar, Microwave engineering (John Wiley & Sons, 2009).
  49. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A85, 053842 (2012). [CrossRef]
  50. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012). [CrossRef] [PubMed]
  51. S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3d periodic arrays of plasmonic nanospheres,” Opt. Express19, 26027–26043 (2011). [CrossRef]
  52. F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: A discrete wiener-hopf formulation,” Radio Sci.44, RS2S91 (2009). [CrossRef]
  53. P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5, 5855–5863 (2011). [CrossRef] [PubMed]
  54. Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited