OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7641–7650

Route diversity analyses for free-space optical wireless links within turbulent scenarios

Stanislav Zvanovec, Joaquin Perez, Zabih Ghassemlooy, Sujan Rajbhandari, and Jiri Libich  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7641-7650 (2013)
http://dx.doi.org/10.1364/OE.21.007641


View Full Text Article

Enhanced HTML    Acrobat PDF (1099 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Free-Space Optical (FSO) communications link performance is highly affected when propagating through the time-spatially variable turbulent environment. In order to improve signal reception, several mitigation techniques have been proposed and analytically investigated. This paper presents experimental results for the route diversity technique evaluations for a specific case when several diversity links intersects a common turbulent area and concurrently each passing regions with different turbulence flows.

© 2013 OSA

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 11, 2013
Revised Manuscript: February 18, 2013
Manuscript Accepted: March 11, 2013
Published: March 20, 2013

Citation
Stanislav Zvanovec, Joaquin Perez, Zabih Ghassemlooy, Sujan Rajbhandari, and Jiri Libich, "Route diversity analyses for free-space optical wireless links within turbulent scenarios," Opt. Express 21, 7641-7650 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7641


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2012).
  2. M. Grabner and V. Kvicera, “The wavelength dependent model of extinction in fog and haze for free space optical communication,” Opt. Express19(4), 3379–3386 (2011). [CrossRef] [PubMed]
  3. J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012). [CrossRef]
  4. Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol.30(13), 2188–2194 (2012). [CrossRef]
  5. X. Zhu and J. M. Kahn, “Performance bounds for coded free-space optical communications through atmospheric turbulence channels,” IEEE Trans. Commun.51(8), 1233–1239 (2003). [CrossRef]
  6. W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun.5(9), 1262–1267 (2011). [CrossRef]
  7. M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw.1(6), 580–593 (2009). [CrossRef]
  8. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm.8(2), 951–957 (2009). [CrossRef]
  9. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm.6(8), 2813–2819 (2007). [CrossRef]
  10. H. Moradi, H. H. Refai, and P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron6(1), 34–42 (2012). [CrossRef]
  11. R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Soc. Am. A19(4), 753–758 (2002). [CrossRef] [PubMed]
  12. V. Weerackody and A. R. Hammons, “Wavelength Correlation in Free Space Optical Communication Systems,” in Proceedings of IEEE Military Communications Conference 2006, (IEEE, 2006), pp. 1–6. [CrossRef]
  13. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link,” Appl. Opt.46(26), 6561–6571 (2007). [CrossRef] [PubMed]
  14. N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59(5), 1368–1377 (2011). [CrossRef]
  15. S. Rosenberg and M. C. Teich, “Photocounting Array Receivers for Optical Communication through the Lognormal Atmospheric Channel. 2: Optimum and Suboptimum Receiver Performance for Binary Signaling,” Appl. Opt.12(11), 2625–2635 (1973). [CrossRef] [PubMed]
  16. A. Belmonte, A. Comerón, J. A. Rubio, J. Bará, and E. Fernández, “Atmospheric-turbulence-induced power-fade statistics for a multiaperture optical receiver,” Appl. Opt.36(33), 8632–8638 (1997). [CrossRef] [PubMed]
  17. M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997). [CrossRef]
  18. F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary,” Proc. SPIE7814, 78140Y, 78140Y-9 (2010). [CrossRef]
  19. E. J. Lee and V. W. S. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Comm.22(9), 1896–1906 (2004). [CrossRef]
  20. N. Letzepis, K. D. Nguyen, A. G. Fabregas, and W. G. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm.27(9), 1709–1719 (2009). [CrossRef]
  21. E. Lee, J. Park, D. Han, and G. Yoon, “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photon. Technol. Lett.23(21), 1642–1644 (2011). [CrossRef]
  22. W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012). [CrossRef]
  23. W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008). [CrossRef]
  24. COST action IC 1101 OPTICWISE Optical Wireless Communications - An Emerging Technology”, retrieved 20.11.2012, http://opticwise.uop.gr/ .
  25. A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007). [CrossRef]
  26. J. Libich, S. Zvanovec, and M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE8246, 82460O (2012). [CrossRef]
  27. S. Kaneko, T. Hamai, and K. Oba, “Evaluation of a free-space optical mesh network communication system in the Tokyo metropolitan area,” J. Opt. Netw.1, 414–423 (2002).
  28. W. K. Pratt, Laser Communication Systems (John Wiley & Sons, 1969).
  29. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Plenum, 1988).
  30. G. R. Osche, Optical Detection Theory for Laser Applications (Wiley-Interscience, 2002).
  31. A. Kolmogorov, ed., Turbulence, Classic Papers on Statistical Theory (Wiley-Interscience, 1961).
  32. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2nd edition, 2005).
  33. Y. C. Ko, M. S. Alouini, and M. K. Simon, “Analysis and optimization of switched diversity systems,” IEEE Trans. Vehicular Technol.49(5), 1813–1831 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited