OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7748–7757

Optimal design of suspended silica on-chip splitter

Soheil Soltani and Andrea M. Armani  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7748-7757 (2013)
http://dx.doi.org/10.1364/OE.21.007748


View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: Photonic splitters and couplers are one of the fundamental elements in integrated optical circuits. As such, over the past decade significant research efforts have been dedicated to the development of low loss, wide bandwidth devices. While silica-based devices have clear advantages in terms of bandwidth, silicon and silicon nitride devices have lead the field in terms of ease of integration. In the present work, we provide design parameters for a novel splitter based on a suspended silica device. Unlike previous coupler devices which have smooth transition regions, the proposed device has a small defect which enables coupling across a large membrane. The designs are based on 3D FDTD models, and incorporate wavelength, refractive index and polarization dependence. The model is experimentally verified at select wavelengths from the visible through the near-IR. For comparison, we have also modeled the splitting ratio for several materials which are commonly used as waveguiding devices.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters

ToC Category:
Integrated Optics

History
Original Manuscript: January 28, 2013
Revised Manuscript: March 10, 2013
Manuscript Accepted: March 12, 2013
Published: March 21, 2013

Citation
Soheil Soltani and Andrea M. Armani, "Optimal design of suspended silica on-chip splitter," Opt. Express 21, 7748-7757 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7748


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011). [CrossRef]
  2. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011). [CrossRef] [PubMed]
  3. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011). [CrossRef]
  4. D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012). [CrossRef]
  5. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express17(10), 7862–7872 (2009). [CrossRef] [PubMed]
  6. Y. H. Fei, S. W. Chen, L. B. Zhang, and T. T. Cao, “Design and analysis of polarization splitter based on a horizontal slotted waveguide,” Opt. Eng.51(5), 054601 (2012). [CrossRef]
  7. L. L. Zhang, Q. Li, and Q. Wang, “1-to-N beam splitter based on photonic crystal branched waveguide structure,” Opt. Laser Technol.43(7), 1325–1330 (2011). [CrossRef]
  8. X. M. Zhang and A. M. Armani, “Suspended bridge-like silica 2×2 beam splitter on Silicon,” Opt. Lett.36(15), 3012–3014 (2011). [CrossRef] [PubMed]
  9. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).
  10. K. Thyagarajan, A. Kumar, and I. C. Goyal, “Exact analysis of the evanescent coupling between two indiffused optical waveguides,” Appl. Opt.20(10), 1821–1824 (1981). [CrossRef] [PubMed]
  11. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. B62(11), 1267–1277 (1972). [CrossRef]
  12. H. Sasaki and N. Mikoshiba, “Normalized power transmission in single mode optical brancing waveguides,” Elec Lett17(3), 136–138 (1981). [CrossRef]
  13. E. Palik, Handbook of Optical Constants of Solids (Elsevier 1998).
  14. A. Martínez, F. Cuesta-Soto, J. M. J. García, N. V. Sochinskii, M. Abellan, J. R. Fernández, A. M. S. Mengali, C. Corsi, I. Reid, M. Robertson, S. Neretina, R. A. Hughes, J. Wojcik, J. S. Preston, and P. Mascher, “Cadmium Telluride: a Silicon-compatible optical material as an alternative technology for building all-optical photonic devices,” in SPIE: Silicon Photonics and Photonic Integrated Circuits (SPIE, 2008).
  15. E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000). [CrossRef]
  16. B. A. Rose, A. J. Maker, and A. M. Armani, “Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR,” Opt. Mater. Express2(5), 671–681 (2012). [CrossRef]
  17. A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011). [CrossRef] [PubMed]
  18. X. Zhang, M. Harrison, A. Harker, and A. M. Armani, “Serpentine low loss trapezoidal silica waveguides on silicon,” Opt. Express20(20), 22298–22307 (2012). [CrossRef] [PubMed]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, London, 1984).
  20. R. Sammut and A. W. Snyder, “Leaky modes on a dielectric waveguide: orthogonality and excitation,” Appl. Opt.15(4), 1040–1044 (1976). [CrossRef] [PubMed]
  21. I. Papakonstantinou, K. Wang, D. R. Selviah, and F. A. Fernández, “Transition, radiation and propagation loss in polymer multimode waveguide bends,” Opt. Express15(2), 669–679 (2007). [CrossRef] [PubMed]
  22. C. R. Murthy and A. M. Armani, “Mass transport effects in suspended waveguide biosensors integrated in microfluidic channels,” Sensors (Basel)12(12), 14327–14343 (2012). [CrossRef] [PubMed]
  23. B. Chen, L. Huang, Y. Li, C. Liu, and G. Liu, “Flexible optical waveguide beam splitters based on directional coupling,” J. Opt. Soc. Am. B28(11), 2680–2684 (2011). [CrossRef]
  24. W. C. Chiu, C. Y. Lu, and M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and Silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron.17(3), 540–545 (2011). [CrossRef]
  25. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011). [CrossRef] [PubMed]
  26. J. H. Zhu, X. G. Huang, and X. Mei, “Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths,” IEEE Trans. NanoTechnol.10(5), 1166–1171 (2011). [CrossRef]
  27. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited