OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7793–7798

Fundamental limits to slow-light arrayed-waveguide-grating spectrometers

Zhimin Shi and Robert W. Boyd  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7793-7798 (2013)
http://dx.doi.org/10.1364/OE.21.007793


View Full Text Article

Enhanced HTML    Acrobat PDF (1034 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analytical model that describes the limiting spectral performance of arrayed-waveguide-grating (AWG) spectrometers that incorporate slow-light methods. We show that the loss-limited spectral resolution of a slow-light grating-based spectrometer scales as the loss–group-index ratio of the waveguide array. We further show that one can achieve a spectral resolution of a few GHz using currently available slow-light photonic crystal waveguides while greatly shrinking the on-chip footprint of the spectrometer.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.5296) Integrated optics : Photonic crystal waveguides
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Slow and Fast Light

History
Original Manuscript: January 7, 2013
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 15, 2013
Published: March 22, 2013

Citation
Zhimin Shi and Robert W. Boyd, "Fundamental limits to slow-light arrayed-waveguide-grating spectrometers," Opt. Express 21, 7793-7798 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7793


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 2002), (vol. 43) pp. 497–530. [CrossRef]
  2. C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol.24, 4642–4654 (2006). [CrossRef]
  3. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon.2, 287–318 (2010). [CrossRef]
  4. T. Baba, “Slow light in photonics crystals,” Nature Photonics2, 465–473 (2008). [CrossRef]
  5. S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in “Quantum Electronics and Laser Science Conference (QELS),” (paper JWB97, 2005).
  6. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007). [CrossRef] [PubMed]
  7. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett.99, 133601 (2007). [CrossRef] [PubMed]
  8. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett.99, 240801 (2007). [CrossRef]
  9. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Amer. B25, C136–C143 (2008). [CrossRef]
  10. U. Bortolozzo, S. Residori, and J.-P. Huignard, “Slow-light birefringence and polarization interferometry,” Opt. Lett.35, 2076–2078 (2010). [CrossRef] [PubMed]
  11. M. Smit and C. Van Dam, “Phasar-based wdm-devices: Principles, design and applications,” IEEE J. Sel. Topics Quantum Electron.2, 236 –250 (1996). [CrossRef]
  12. O. Matos, M. Calvo, P. Cheben, S. Janz, J. Rodrigo, D.-X. Xu, and A. Delage, “Arrayed waveguide grating based on group-index modification,” J. Lightwave Technol.24, 1551 –1557 (2006). [CrossRef]
  13. Z. Shi and R. W. Boyd, “Slow-light enhanced spectrometers on chip,” Proceedings of SPIE8007, 80071D (2011). [CrossRef]
  14. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14, 9444–9450 (2006). [CrossRef] [PubMed]
  15. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12, 104004 (2010). [CrossRef]
  16. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18, 27627–27638 (2010). [CrossRef]
  17. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008). [CrossRef] [PubMed]
  18. W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2009), p. OWO2.
  19. F. Wang, J. S. Jensen, J. Mørk, and O. Sigmund, “Systematic design of loss-engineered slow-light waveguides,” J. Opt. Soc. Am. A29, 2657–2666 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited