OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7799–7810

Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors

Zhe Liu, Gui Chen, Bo Liang, Gang Yu, Hongtao Huang, Di Chen, and Guozhen Shen  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7799-7810 (2013)
http://dx.doi.org/10.1364/OE.21.007799


View Full Text Article

Enhanced HTML    Acrobat PDF (4010 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

ZnTe is an important p-type semiconductor with great applications as field-effect transistors and photodetectors. In this paper, individual ZnTe nanowires based field-effect transistors was fabricated, showing evident p-type conductivity with an effect mobility of 11.3 cm2/Vs. Single ZnTe nanowire based photodetectors on rigid silicon substrate exhibited high sensitivity and excellent stability to visible incident light with responstivity and quantum efficiency as high as 1.87 × 105 A/W and 4.36 × 107% respectively and are stable in a wide temperature range (25-250 °C). The polarization-sensitivity of the ZnTe nanowires was studied for the first time. The results revealed a periodic oscillation with the continuous variation of polarization angles. Besides, flexible photodetectors were also fabricated with the features of excellent flexibility, stability and sensitivity to visible incident light. Our work would enable application opportunities in using ZnTe nanowires for ultrahigh-performance photodetectors in scientific, commercial and industrial applications.

© 2013 OSA

OCIS Codes
(230.5160) Optical devices : Photodetectors
(260.5150) Physical optics : Photoconductivity
(160.4236) Materials : Nanomaterials

ToC Category:
Detectors

History
Original Manuscript: January 22, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 8, 2013
Published: March 22, 2013

Citation
Zhe Liu, Gui Chen, Bo Liang, Gang Yu, Hongtao Huang, Di Chen, and Guozhen Shen, "Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors," Opt. Express 21, 7799-7810 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001). [CrossRef] [PubMed]
  2. Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science291(5505), 851–853 (2001). [CrossRef] [PubMed]
  3. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001). [CrossRef] [PubMed]
  4. J. J. Chen, K. Wang, L. Hartman, and W. L. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors,” J. Phys. Chem. C112(41), 16017–16021 (2008). [CrossRef]
  5. B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010). [CrossRef]
  6. Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003). [CrossRef]
  7. Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett.3(3), 343–346 (2003). [CrossRef]
  8. J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011). [CrossRef] [PubMed]
  9. G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008). [CrossRef]
  10. C. Liu, J. W. Sun, J. Y. Tang, and P. D. Yang, “Zn-doped p- Type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett.12(10), 5407–5411 (2012). [CrossRef] [PubMed]
  11. E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130, 9224–9225 (2008). [PubMed]
  12. M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009). [CrossRef] [PubMed]
  13. A. Zhang, H. K. Kim, J. Cheng, and Y. H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors,” Nano Lett.10(6), 2117–2120 (2010). [CrossRef] [PubMed]
  14. X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011). [CrossRef]
  15. G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008). [CrossRef]
  16. D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012). [CrossRef]
  17. J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008). [CrossRef] [PubMed]
  18. Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).
  19. S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011). [CrossRef]
  20. Q. F. Meng, C. B. Jiang, and S. X. Mao, “Ohmic contacts and photoconductivity of individual ZnTe nanowires,” Appl. Phys. Lett.4, 043111 (2009).
  21. Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express19(7), 6100–6108 (2011). [CrossRef] [PubMed]
  22. Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012). [CrossRef] [PubMed]
  23. G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011). [CrossRef] [PubMed]
  24. G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011). [CrossRef] [PubMed]
  25. F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009). [CrossRef] [PubMed]
  26. J. L. Zhang, C. Wang, and C. W. Zhou, “Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics,” ACS Nano6(8), 7412–7419 (2012). [CrossRef] [PubMed]
  27. G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011). [CrossRef] [PubMed]
  28. H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012). [CrossRef]
  29. P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011). [CrossRef]
  30. L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010). [CrossRef] [PubMed]
  31. L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010). [CrossRef] [PubMed]
  32. T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010). [CrossRef]
  33. Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).
  34. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006). [CrossRef] [PubMed]
  35. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007). [CrossRef]
  36. D. P. Amalnerkar, “Photoconducting and allied properties of CdS thick film,” Mater. Chem. Phys.60(1), 1–21 (1999). [CrossRef]
  37. A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007). [CrossRef] [PubMed]
  38. C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).
  39. J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001). [CrossRef] [PubMed]
  40. S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004). [CrossRef]
  41. A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007). [CrossRef] [PubMed]
  42. Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004). [CrossRef]
  43. Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012). [CrossRef] [PubMed]
  44. X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited