OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7828–7834

Polarization diversity DPSK demodulator on the silicon-on-insulator platform with simple fabrication

Yunhong Ding, Bo Huang, Haiyan Ou, Francesco Da Ros, and Christophe Peucheret  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7828-7834 (2013)
http://dx.doi.org/10.1364/OE.21.007828


View Full Text Article

Enhanced HTML    Acrobat PDF (1347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We demonstrate a novel polarization diversity differential phase-shift keying (DPSK) demodulator on the SOI platform, which is fabricated in a single lithography and etching step. The polarization diversity DPSK demodulator is based on a novel polarization splitter and rotator, which consists of a tapered waveguide followed by a 2 × 2 multimode interferometer. A lowest insertion loss of 0.5 dB with low polarization dependent loss of 1.6 dB and low polarization dependent extinction ratio smaller than 3 dB are measured for the polarization diversity circuit. Clear eye-diagrams and a finite power penalty of only 3 dB when the input state of polarization is scrambled are obtained for 40 Gbit/s non return-to-zero DPSK (NRZ-DPSK) demodulation.

© 2013 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(130.3120) Integrated optics : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 6, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 15, 2013
Published: March 22, 2013

Citation
Yunhong Ding, Bo Huang, Haiyan Ou, Francesco Da Ros, and Christophe Peucheret, "Polarization diversity DPSK demodulator on the silicon-on-insulator platform with simple fabrication," Opt. Express 21, 7828-7834 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7828


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23(1), 115–130 (2005). [CrossRef]
  2. I. P. Kaminow, “Balanced optical discriminator,” Appl. Opt.3(4), 507–510 (1964). [CrossRef]
  3. I. Lyubomirsky and C.-C. Chien, “DPSK demodulator based on optical discriminator filter,” IEEE Photon. Technol. Lett.17(2), 492–494 (2005). [CrossRef]
  4. C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett.17(6), 1313–1315 (2005). [CrossRef]
  5. R. Kou, H. Nishi, T. Tsuchizawa, H. Fukuda, H. Shinojima, and K. Yamada, “Single silicon wire waveguide based delay line interferometer for DPSK demodulation,” Opt. Express20(10), 11037–11045 (2012). [CrossRef] [PubMed]
  6. L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15(18), 11564–11569 (2007). [CrossRef] [PubMed]
  7. L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential phase shift keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009). [CrossRef]
  8. Y. Ding, J. Xu, C. Peucheret, M. Pu, L. Liu, J. Seoane, H. Ou, X. Zhang, and D. Huang, “Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator,” J. Lightwave Technol.29(5), 677–684 (2011). [CrossRef]
  9. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007). [CrossRef] [PubMed]
  10. X. Chen, C. Li, Y. Gao, L. Xu, H. Tsang, and C. Shu, “Characterization of integrated polarization-diversity DPSK demodulator with two-dimensional chirped grating couplers and ring resonators,” Proc Optical Fiber Communication Conference (Optical Society of America, 2010), paper JWA26.
  11. F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol.27(4), 417–425 (2009). [CrossRef]
  12. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express20(26), B493–B500 (2012). [CrossRef] [PubMed]
  13. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  14. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett.36(4), 469–471 (2011). [CrossRef] [PubMed]
  15. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011). [CrossRef] [PubMed]
  16. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express20(18), 20021–20027 (2012). [CrossRef] [PubMed]
  17. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  18. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011). [CrossRef] [PubMed]
  19. Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011). [CrossRef]
  20. Y. Ding, H. Ou, and C. Peucheret, “Wide-band polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett., doc. ID 184241, (posted 06 March 2013, in press).
  21. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012). [CrossRef] [PubMed]
  22. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  23. A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron.E85-C(4), 1033–1038 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited