OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7841–7850

Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device

Shin Arahira and Hitoshi Murai  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7841-7850 (2013)
http://dx.doi.org/10.1364/OE.21.007841


View Full Text Article

Enhanced HTML    Acrobat PDF (4168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we report the generation of wavelength-multiplexed polarization-entangled photon pairs in the 1.5-μm communication wavelength band by using cascaded optical second nonlinearities (sum-frequency generation and subsequent spontaneous parametric down-conversion, c-SFG/SPDC) in a periodically poled LiNbO3 ridge waveguide device. The c-SFG/SPDC method makes it possible to fully use the broad spectral bandwidth of SPDC in nearly frequency-degenerate conditions, and can provide more than 50 pairs of wavelength channels for the entangled photon pairs in the 1.5-μm wavelength band, using only standard optical resources in the telecom field. Visibilities higher than 98% were clearly observed in two-photon interference fringes for all the wavelength channels under investigation (eight pairs). We further performed a detailed experimental investigation of the cross-talk characteristics and the impact of detuning the pump wavelengths.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(270.4180) Quantum optics : Multiphoton processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: March 6, 2013
Manuscript Accepted: March 8, 2013
Published: March 22, 2013

Citation
Shin Arahira and Hitoshi Murai, "Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device," Opt. Express 21, 7841-7850 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” post-deadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.
  2. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009). [CrossRef] [PubMed]
  3. K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005). [CrossRef] [PubMed]
  4. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007). [CrossRef]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  6. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999). [CrossRef]
  7. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett.39(7), 621–622 (2003). [CrossRef]
  8. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12(10), 103005 (2010), doi:. [CrossRef]
  9. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002). [CrossRef]
  10. J. Chen, K. Fook Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys.9(8), 289 (2007), doi:. [CrossRef]
  11. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express19(17), 16032–16043 (2011). [CrossRef] [PubMed]
  12. H. Takesue and B. Miquel, “Entanglement swapping using telecom-band photons generated in fibers,” Opt. Express17(13), 10748–10756 (2009). [CrossRef] [PubMed]
  13. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution,” Opt. Express16(20), 16052–16057 (2008). [CrossRef] [PubMed]
  14. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett.35(6), 802–804 (2010). [CrossRef] [PubMed]
  15. C. Q. Xu and B. Chen, “Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation,” Opt. Lett.29(3), 292–294 (2004). [CrossRef] [PubMed]
  16. T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett.23(3), 161–163 (2011). [CrossRef]
  17. H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13(20), 7832–7839 (2005). [CrossRef] [PubMed]
  18. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express16(8), 5721–5727 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited