OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8069–8075

Compact bends for multi-mode photonic crystal waveguides with high transmission and suppressed modal crosstalk

Victor Liu and Shanhui Fan  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8069-8075 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an extremely compact bend for a photonic crystal waveguide supporting three spatial modes. The bend exhibits nearly 100% transmission over a relative bandwidth of 1% with less than 1% crosstalk. We show that our design is robust with respect to fabrication errors. Our design method is applied to create a structure consisting of dielectric rods, as well as a structure consisting of air holes in a dielectric background.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: February 13, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 22, 2013
Published: March 27, 2013

Victor Liu and Shanhui Fan, "Compact bends for multi-mode photonic crystal waveguides with high transmission and suppressed modal crosstalk," Opt. Express 21, 8069-8075 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6, 488–496 (2012). [CrossRef]
  2. X. Yu and S. Fan, “Anomalous reflections at photonic crystal surfaces,” Phys. Rev. E70, 055601 (2004). [CrossRef]
  3. P. B. Catrysse and S. Fan, “Routing of deep-subwavelength optical beams and images without reflection and diffraction using infinitely anisotropic metamaterials,” Adv. Mater.25, 194–198 (2012). [CrossRef] [PubMed]
  4. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun.3, 1217 (2012). [CrossRef]
  5. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996). [CrossRef] [PubMed]
  6. J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett.84, 2022–2024 (2004). [CrossRef]
  7. A. Miroshnichenko and Y. Kivshar, “Sharp bends in photonic crystal waveguides as nonlinear fano resonators,” Opt. Express13, 3969–3976 (2005). [CrossRef] [PubMed]
  8. F. Monifi, M. Djavid, A. Ghaffari, and M. S. Abrishamian, “Design of efficient photonic crystal bend and power splitter using super defects,” J. Opt. Soc. Am. B25, 1805–1810 (2008). [CrossRef]
  9. Z. Hu and Y. Y. Lu, “Improved bends for two-dimensional photonic crystal waveguides,” Opt. Commun.284, 2812–2816 (2011). [CrossRef]
  10. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998). [CrossRef] [PubMed]
  11. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett.76, 952–954 (2000). [CrossRef]
  12. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths,” Opt. Lett.26, 286–288 (2001). [CrossRef]
  13. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Improved 60 degree bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals,” J. Light-wave Technol.20, 1198 (2002). [CrossRef]
  14. L. Frandsen, A. Harpøth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express12, 5916–5921 (2004). [CrossRef] [PubMed]
  15. P. Strasser, G. Stark, F. Robin, D. Erni, K. Rauscher, R. Wüest, and H. Jäckel, “Optimization of a 60 ° waveguide bend in inp-based 2d planar photonic crystals,” J. Opt. Soc. Am. B25, 67–73 (2008). [CrossRef]
  16. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett.81, 1163–1165 (2002). [CrossRef]
  17. Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator,” Opt. Lett.30, 141–143 (2005). [CrossRef] [PubMed]
  18. V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett.36, 591–593 (2011). [CrossRef] [PubMed]
  19. V. Liu, D. A. B. Miller, and S. Fan, “Highly tailored computational electromagnetics methods for nanophotonic design and discovery,” Proc. IEEE101, 484–493 (2013). [CrossRef]
  20. G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett.29, 2288–2290 (2004). [CrossRef] [PubMed]
  21. Y. Jiao, S. Fan, and D. Miller, “Systematic photonic crystal device design: global and local optimization and sensitivity analysis,” IEEE J. Quantum Electron.42, 266–279 (2006). [CrossRef]
  22. Y. Huang and Y. Y. Lu, “Scattering from periodic arrays of cylinders by dirichlet-to-neumann maps,” J. Lightwave Technol.24, 3448–3453 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited