OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8240–8250

Long-range plasmonic directional coupler switches controlled by nematic liquid crystals

D. C. Zografopoulos and R. Beccherelli  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8240-8250 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2043 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A liquid-crystal tunable plasmonic optical switch based on a long-range metal stripe directional coupler is proposed and theoretically investigated. Extensive electro-optic tuning of the coupler’s characteristics is demonstrated by introducing a nematic liquid crystal layer above two coplanar plasmonic waveguides. The switching properties of the proposed plasmonic structure are investigated through rigorous liquid-crystal studies coupled with a finite-element based analysis of light propagation. A directional coupler optical switch is demonstrated, which combines very low power consumption, low operation voltages, adjustable crosstalk and coupling lengths, along with sufficiently reduced insertion losses.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(230.3720) Optical devices : Liquid-crystal devices
(240.6680) Optics at surfaces : Surface plasmons
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: December 27, 2012
Revised Manuscript: February 26, 2013
Manuscript Accepted: March 3, 2013
Published: March 28, 2013

D. C. Zografopoulos and R. Beccherelli, "Long-range plasmonic directional coupler switches controlled by nematic liquid crystals," Opt. Express 21, 8240-8250 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008). [CrossRef]
  2. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011). [CrossRef] [PubMed]
  3. E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  5. N. Pleros, E. E. Kriezis, and K. Vyrsokinos, “Optical interconnects using plasmonics and Si-photonics,” IEEE Photon. J.3, 296–301 (2011). [CrossRef]
  6. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011). [CrossRef]
  7. O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012). [CrossRef]
  8. S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012). [CrossRef] [PubMed]
  9. J. J. Ju, S. Park, M.-S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 Gbits/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett.91, 171117 (2007). [CrossRef]
  10. S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17, 697–702 (2009). [CrossRef] [PubMed]
  11. J. J. Ju, S. Park, M.-S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26, 1510–1518 (2008). [CrossRef]
  12. J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express16, 13133–13138 (2008). [CrossRef] [PubMed]
  13. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009). [CrossRef]
  14. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004). [CrossRef]
  15. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quant. Electron.12, 1233–1241 (2006). [CrossRef]
  16. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berrini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol.24, 477–494 (2006). [CrossRef]
  17. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berrini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol.24, 4391–4402 (2006). [CrossRef]
  18. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012). [CrossRef] [PubMed]
  19. I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett.7, 667–670 (2009). [CrossRef]
  20. I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics6, 061001 (2012). [CrossRef]
  21. P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005). [CrossRef] [PubMed]
  22. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010). [CrossRef]
  23. L. De Sio, R. Caputo, U. Cataldi, and C. Umeton, “Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials,” J. Mater. Chem21, 18967–18970 (2011). [CrossRef]
  24. L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012). [CrossRef] [PubMed]
  25. A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys.110, 093102 (2011). [CrossRef]
  26. J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express19, 15265–15274 (2011). [CrossRef] [PubMed]
  27. A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012). [CrossRef]
  28. D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics (2013). DOI:. [CrossRef]
  29. D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl.11, 73–84 (2013). [CrossRef]
  30. J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express20, 15359–15376 (2012). [CrossRef] [PubMed]
  31. A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006). [CrossRef]
  32. D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010). [CrossRef]
  33. A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29, 2560–2569 (2011). [CrossRef]
  34. B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D: Appl. Phys.42, 045111 (2009). [CrossRef]
  35. J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett.88, 051915 (2006). [CrossRef]
  36. R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002). [CrossRef]
  37. J. Robertson, “High dielectric constant oxides,” Eur. Phys. J.28, 265–291 (2004).
  38. C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991).
  39. Norland Products, Optical Adhesives, ( www.norlandprod.com ).
  40. M. Wang, ed., Lithography (InTech, 2010). [CrossRef]
  41. CYCLOTENE, Dow Chemical, ( www.dow.com ).
  42. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005). [CrossRef]
  43. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt.23, 4477–4485 (1984). [CrossRef] [PubMed]
  44. E. D. Palik, Handbook of optical constants of solids (Orlando, FL, Academic, 1985).
  45. S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998). [CrossRef]
  46. T. Srivastava and A. Kumar, “Comparative study of directional couplers utilizing long-range surface plasmon polaritons,” Appl. Optics49, 2397–2402 (2010). [CrossRef]
  47. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, “Simulations of hybrid long-range plasmon modes with application to 90° bends,” Opt. Lett.32, 2354–2356 (2007). [CrossRef] [PubMed]
  48. I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A: Pure Appl. Opt.11, 015002 (2009). [CrossRef]
  49. R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008). [CrossRef]
  50. COMSOL Multiphysics v4.3a, ( www.comsol.com ).
  51. M. Stallein, C. Kolleck, and G. Mrozynski, “Improved analysis of the coupling of optical waves into multimode waveguides using overlap integrals,” in “PIERS 2005 Proceedings,” (Hangzhou, China, 2005), pp. 464–468.
  52. S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998). [CrossRef]
  53. I. W. Steward, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor & Francis, London, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1680 KB)     
» Media 2: MOV (1650 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited