OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8269–8275

Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum

Yuan Liu, Matthew D. King, Haohua Tu, Youbo Zhao, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8269-8275 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vibrational spectroscopy has been widely applied in different fields due to its label-free chemical-sensing capability. Coherent anti-Stokes Raman scattering (CARS) provides stronger signal and faster acquisition than spontaneous Raman scattering, making it especially suitable for molecular imaging. Coherently-controlled single-beam CARS simplifies the conventional multi-beam setup, but the vibrational bandwidth and non-trivial spectrum retrieval have been limiting factors. In this work, a coherent supercontinuum generated in an all-normal-dispersion nonlinear fiber is phase-shaped within a narrow bandwidth for broadband vibrational spectroscopy. The Raman spectra can be directly retrieved from the CARS measurements, covering the fingerprint regime up to 1750 cm−1. The retrieved spectra of several chemical species agree with their spontaneous Raman data. The compact fiber supercontinuum source offers broad vibrational bandwidth with high stability and sufficient power, showing the potential for spectroscopic imaging in a wide range of applications.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(320.5540) Ultrafast optics : Pulse shaping
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:

Original Manuscript: January 15, 2013
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 19, 2013
Published: March 28, 2013

Yuan Liu, Matthew D. King, Haohua Tu, Youbo Zhao, and Stephen A. Boppart, "Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum," Opt. Express 21, 8269-8275 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1(1), 883–909 (2008). [CrossRef] [PubMed]
  2. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011). [CrossRef] [PubMed]
  3. D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett.92(12), 123905 (2004). [CrossRef] [PubMed]
  4. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004). [CrossRef]
  5. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett.29(24), 2923–2925 (2004). [CrossRef] [PubMed]
  6. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.31(4), 480–482 (2006). [CrossRef] [PubMed]
  7. H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the Maximum Entropy Method: the main lipid phase transition,” ChemPhysChem8(2), 279–287 (2007). [CrossRef] [PubMed]
  8. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express16(11), 7985–7996 (2008). [CrossRef] [PubMed]
  9. I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett.34(15), 2258–2260 (2009). [CrossRef] [PubMed]
  10. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  11. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009). [CrossRef] [PubMed]
  12. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002). [CrossRef] [PubMed]
  13. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett.31(16), 2495–2497 (2006). [CrossRef] [PubMed]
  14. B. von Vacano, W. Wohlleben, and M. Motzkus, “Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,” Opt. Lett.31(3), 413–415 (2006). [CrossRef] [PubMed]
  15. B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys.10(5), 681–691 (2008). [CrossRef] [PubMed]
  16. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express17(14), 11259–11266 (2009). [CrossRef] [PubMed]
  17. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett.89(27), 273001 (2002). [CrossRef] [PubMed]
  18. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett.90(21), 213902 (2003). [CrossRef] [PubMed]
  19. S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A72(4), 041803 (2005). [CrossRef]
  20. S. H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett.32(10), 1332–1334 (2007). [CrossRef] [PubMed]
  21. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express16(8), 5499–5504 (2008). [CrossRef] [PubMed]
  22. O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express18(22), 22693–22701 (2010). [CrossRef] [PubMed]
  23. A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Full characterization of the third-order nonlinear susceptibility using a single-beam coherent anti-Stokes Raman scattering setup,” Opt. Lett.37(20), 4239–4241 (2012). [CrossRef] [PubMed]
  24. H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett.86(12), 121113 (2005). [CrossRef]
  25. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B22(9), 1934–1938 (2005). [CrossRef]
  26. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007). [CrossRef] [PubMed]
  27. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express17(4), 2984–2996 (2009). [CrossRef] [PubMed]
  28. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser & Photon Rev,1–18 (2012).
  29. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B24(8), 1786–1792 (2007). [CrossRef]
  30. H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010). [CrossRef] [PubMed]
  31. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express19(6), 4902–4907 (2011). [CrossRef] [PubMed]
  32. H. Tu, Y. Liu, D. Turchinovich, and S. A. Boppart, “Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus,” Opt. Lett.36(12), 2315–2317 (2011). [CrossRef] [PubMed]
  33. H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012). [CrossRef] [PubMed]
  34. J. Jakutis-Neto, J. P. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express20(9), 9841–9850 (2012). [CrossRef] [PubMed]
  35. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express20(2), 1113–1128 (2012). [CrossRef] [PubMed]
  36. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012). [CrossRef] [PubMed]
  37. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009). [CrossRef] [PubMed]
  38. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J Raman Spectrosc40(7), 726–731 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited