OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8320–8330

Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides

Shiyang Zhu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8320-8330 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2701 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extremely compact Si phase modulator is proposed and validated, which relies on effective modulation of the real part of modal index of horizontal metal-insulator-Si-insulator-metal plasmonic waveguides by a voltage applied between the metal cover and the Si core. Proof-of-concept devices are fabricated on silicon-on-insulator substrates using standard complementary metal-oxide-semiconductor technology using copper as the metal and thermal silicon dioxide as the insulator. A modulator with a 1-μm-long phase shifter inserted in an asymmetric Si Mach-Zehnder interferometer exhibits 9-dB extinction ratio under a 6-V/10-kHz voltage swing. Numerical simulations suggest that high speed and low driving voltage could be achieved by shortening the distance between the Si core and the n+-contact and by using a high-κ dielectric as the insulator, respectively.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(250.7360) Optoelectronics : Waveguide modulators
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: November 14, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: December 27, 2012
Published: March 28, 2013

Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides," Opt. Express 21, 8320-8330 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010). [CrossRef]
  4. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97(4), 041107 (2010). [CrossRef]
  5. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008). [CrossRef] [PubMed]
  6. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011). [CrossRef] [PubMed]
  7. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).
  8. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  9. R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008). [CrossRef]
  10. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011). [CrossRef]
  11. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  12. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012). [CrossRef] [PubMed]
  13. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011). [CrossRef]
  14. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008). [CrossRef] [PubMed]
  15. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960). [CrossRef]
  16. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011). [CrossRef]
  17. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, 2008), chapter 7.
  18. Y. Masuda, Y. Jinbo, and K. Koumoto, “Room temperature CVD of TiO2 thin films and their electronic properties,” Sci. Adv. Mater.1(2), 138–143 (2009). [CrossRef]
  19. G. Gultekin and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater.18, 372–381 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited