OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8953–8963

Integrated Bragg gratings in spiral waveguides

Alexandre D. Simard, Yves Painchaud, and Sophie LaRochelle  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8953-8963 (2013)
http://dx.doi.org/10.1364/OE.21.008953


View Full Text Article

Enhanced HTML    Acrobat PDF (4038 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Over the last two decades, many filters requiring custom spectral responses were obtained from photo-inscribed fiber Bragg gratings because of the flexibility inherent to this technology. However, Bragg gratings in silicon waveguides have the potential to provide faster and more efficient tuning capabilities when compared to optical fiber devices. One drawback is that Bragg gratings filters with elaborate spectral amplitude and phase responses often require a long interaction length, which is not compatible with current integration trends in CMOS compatible photonic circuits. In this paper, we propose to make Bragg gratings in spiral-shaped waveguides in order to increase their lengths while making them more compact. The approach preserves the flexibility of regular straight grating structures. More specifically, we demonstrate 2-mm long gratings wrapped in an area of 200 µm x 190 µm without any spectral degradation due to waveguide curvature. Furthermore, we interleave three spiral waveguides with integrated gratings thereby tripling the density and demonstrate good phase compensation for each of them. Finally, we show that this approach is compatible with phase-apodization of the grating coupling coefficient.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 7, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 28, 2013
Published: April 4, 2013

Citation
Alexandre D. Simard, Yves Painchaud, and Sophie LaRochelle, "Integrated Bragg gratings in spiral waveguides," Opt. Express 21, 8953-8963 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8953


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides paper BW2E.3, Optical Society of America (2012).
  2. K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett.92(20), 201111 (2008). [CrossRef]
  3. S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett.43(11), 630–631 (2007). [CrossRef]
  4. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Electrically tunable resonant filters in phase-shifted contra-directional couplers,” in 2012 9th International Conference on Group IV Photonics (GFP)78–80 (2012). [CrossRef]
  5. W. A. Zortman, M. R. Watts, and D. C. Trotter, “Determination of wafer and process induced resonant frequency variation in silicon microdisk-resonators,” in Integrated Photonics and Nanophotonics Research and Applications (2009).
  6. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010). [CrossRef] [PubMed]
  7. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006). [CrossRef]
  8. S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. M. Lyszczarz, “Hybrid multi-mode/single-mode waveguides for low loss,” in Integrated Photonics Research, Optical Society of America (2004).
  9. C. Koos, C. G. Poulton, L. Zimmermann, L. Jacome, J. Leuthold, and W. Freude, “Ideal bend contour trajectories for single-mode operation of low-loss overmoded waveguides,” IEEE Photon. Technol. Lett.19(11), 819–821 (2007). [CrossRef]
  10. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Sel. Top. Quantum Electron.11(2), 75–83 (1975). [CrossRef]
  11. T. E. Murphy, “Integrated optical grating-based matched filters for fiber-optic communications,” Massachusetts Institute of Technology (1996).
  12. W. W. Lui, C.-L. Xu, T. Hirono, K. Yokoyama, and W.-P. Huang, “Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations,” J. Lightwave Technol.16(5), 910–914 (1998). [CrossRef]
  13. S. S. A. Obayya, B. M. A. Rahman, and K. T. V. Grattan, “Full vectorial finite element modal solution of curved optical waveguides,” Laser Phys. Lett.2(3), 131–136 (2005). [CrossRef]
  14. B. M. A. Rahman, D. M. H. Leung, S. S. A. Obayya, and K. T. V. Grattan, “Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling,” Appl. Opt.47(16), 2961–2970 (2008). [CrossRef] [PubMed]
  15. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express14(23), 11128–11141 (2006). [CrossRef] [PubMed]
  16. A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett.24(12), 1033–1035 (2012). [CrossRef]
  17. S. Zamek, D. T. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett.35(20), 3477–3479 (2010). [CrossRef] [PubMed]
  18. A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol.29(24), 3693–3704 (2011). [CrossRef]
  19. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007). [CrossRef]
  20. X. Wang, W. Shi, M. Hochberg, K. Adam, E. Schelew, J. F. Young, N. A. F. Jaeger, and L. Chrostowski, “Lithography simulation for the fabrication of silicon photonic devices with deep-ultraviolet lithography,” in 2012 IEEE 9th International Conference on Group IV Photonics (GFP), 288–290 (2012). [CrossRef]
  21. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012). [CrossRef] [PubMed]
  22. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in curved waveguides,” in the 23rd Annual Meeting of the Photonics Society Denver, USA, paper ThU3 (2010). [CrossRef]
  23. A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron.39(8), 1018–1026 (2003). [CrossRef]
  24. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Characterization of integrated Bragg grating profiles,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides paper (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited