OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10182–10187

Compact static imaging spectrometer combining spectral zooming capability with a birefringent interferometer

Jie Li, Jingping Zhu, Chun Qi, Chuanlin Zheng, Bo Gao, Yunyao Zhang, and Xun Hou  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10182-10187 (2013)
http://dx.doi.org/10.1364/OE.21.010182


View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact static birefringent imaging spectrometer (BIS) with spectral zooming capability is presented. It based on two identical Wollaston prisms and has no slit. The most significant advantage of the BIS is that we can conveniently select spectral resolution to adapt to different application requirements and greatly reduce the size of the spectral image data for capturing, saving, transferring, and processing. Also, we show this configuration blend the advantage of a grating spectrometer and a Michelson interferometer: extremely compact, robust, wide free spectral range and very high throughput.

© 2013 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Spectroscopy

History
Original Manuscript: February 21, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 5, 2013
Published: April 16, 2013

Citation
Jie Li, Jingping Zhu, Chun Qi, Chuanlin Zheng, Bo Gao, Yunyao Zhang, and Xun Hou, "Compact static imaging spectrometer combining spectral zooming capability with a birefringent interferometer," Opt. Express 21, 10182-10187 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10182


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bannon, “Hyperspectral imaging: Cubes and slices,” Nat. Photonics3(11), 627–629 (2009). [CrossRef]
  2. R. Gebbers and V. I. Adamchuk, “Precision agriculture and food security,” Science327(5967), 828–831 (2010). [CrossRef] [PubMed]
  3. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44(1), 013602 (2005). [CrossRef]
  4. J. Li, J. Zhu, and H. Wu, “Compact static Fourier transform imaging spectropolarimeter based on channeled polarimetry,” Opt. Lett.35(22), 3784–3786 (2010). [CrossRef] [PubMed]
  5. T. Inoue, K. Itoh, and Y. Ichioka, “Fourier-transform spectral imaging near the image plane,” Opt. Lett.16(12), 934–936 (1991). [CrossRef] [PubMed]
  6. J. Y. Hardeberg, F. Schmidt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng.41(10), 2532–2548 (2002). [CrossRef]
  7. L. Cheng, T. Chao, M. Dowdy, C. LaBaw, J. Mahoney, G. Reyes, and K. Bergman, “Multispectral imaging systems using acousto-optic tunable filter,” Proc. SPIE1874, 224–231 (1993). [CrossRef]
  8. B. Chen, M. R. Wang, Z. Liu, and J. J. Yang, “Dynamic spectral imaging with spectral zooming capability,” Opt. Lett.32(11), 1518–1520 (2007). [CrossRef] [PubMed]
  9. J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun.284(5), 1127–1131 (2011). [CrossRef]
  10. A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express12(22), 5368–5374 (2004). [CrossRef] [PubMed]
  11. P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, “Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft,” IEEE Trans. Geosci. Rem. Sens.39(11), 2499–2506 (2001). [CrossRef]
  12. D. Steers, W. Sibbett, and M. J. Padgett, “Dual-purpose, compact spectrometer and fiber-coupled laser wavemeter based on a Wollaston prism,” Appl. Opt.37(24), 5777–5781 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited