OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10240–10250

High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator

Jari Peltola, Markku Vainio, Tuomas Hieta, Juho Uotila, Sauli Sinisalo, Markus Metsälä, Mikael Siltanen, and Lauri Halonen  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10240-10250 (2013)
http://dx.doi.org/10.1364/OE.21.010240


View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Highly sensitive cantilever-enhanced photoacoustic detection of hydrogen cyanide and methane in the mid-infrared region is demonstrated. A mid-infrared continuous-wave frequency tunable optical parametric oscillator was used as a light source in the experimental setup. Noise equivalent detection limits of 190 ppt (1 s) and 65 ppt (30 s) were achieved for HCN and CH4, respectively. The normalized noise equivalent absorption coefficient is 1.8 × 10−9 W cm−1 Hz−1/2.

© 2013 OSA

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(280.3420) Remote sensing and sensors : Laser sensors
(300.6430) Spectroscopy : Spectroscopy, photothermal

ToC Category:
Remote Sensing

History
Original Manuscript: March 1, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 14, 2013
Published: April 18, 2013

Citation
Jari Peltola, Markku Vainio, Tuomas Hieta, Juho Uotila, Sauli Sinisalo, Markus Metsälä, Mikael Siltanen, and Lauri Halonen, "High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator," Opt. Express 21, 10240-10250 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10240


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993). [CrossRef]
  2. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997). [CrossRef]
  3. A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett.307(5-6), 343–349 (1999). [CrossRef]
  4. M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B90(2), 289–300 (2008). [CrossRef]
  5. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection,” Phys. Rev. Lett.107(27), 270802 (2011). [CrossRef] [PubMed]
  6. F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Ensyclopedia of Analytical Chemistry, ed. by R. A. Meyers (John Wiley, 2000), 2203–2226.
  7. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt.43(11), 2257–2266 (2004). [CrossRef] [PubMed]
  8. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett.91(23), 231101 (2007). [CrossRef]
  9. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010). [CrossRef]
  10. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110(17), 2103–2109 (2012). [CrossRef]
  11. J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave parametric oscillator,” Appl. Phys. B107(3), 839–847 (2012). [CrossRef]
  12. A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B85(2-3), 173–180 (2006). [CrossRef]
  13. F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B66(6), 741–745 (1998). [CrossRef]
  14. M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B70(6), 895–901 (2000). [CrossRef]
  15. A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum.72(4), 1937–1955 (2001). [CrossRef]
  16. M. E. Webber, M. Pushkarsky, and C. K. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt.42(12), 2119–2126 (2003). [CrossRef] [PubMed]
  17. A. Schmohl, A. Miklós, and P. Hess, “Detection of ammonia by photoacoustic spectroscopy with Semiconductor Lasers,” Appl. Opt.41(9), 1815–1823 (2002). [CrossRef] [PubMed]
  18. D. Newnham, X. Zhan, O. Vaittinen, E. Kauppi, and L. Halonen, “High-resolution photoacoustic study of the 4ν1 band system of monofluoroacetylene using a titanium:sapphire ring laser,” Chem. Phys. Lett.189(3), 205–210 (1992). [CrossRef]
  19. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett.27(21), 1902–1904 (2002). [CrossRef] [PubMed]
  20. K. Wilcken and J. Kauppinen, “Optimization of a microphone for photoacoustic spectroscopy,” Appl. Spectrosc.57(9), 1087–1092 (2003). [CrossRef] [PubMed]
  21. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett.37(21), 4461–4463 (2012). [CrossRef] [PubMed]
  22. J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J.76(1-2), 151–159 (2004). [CrossRef]
  23. J. Uotila, V. Koskinen, and J. Kauppinen, “Selective differential photoacoustic method for trace gas analysis,” Vib. Spectrosc.38(1-2), 3–9 (2005). [CrossRef]
  24. T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, “Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection,” Opt. Express13(7), 2453–2458 (2005). [CrossRef] [PubMed]
  25. V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B86(3), 451–454 (2007). [CrossRef]
  26. A. Parkes, K. Keen, and E. McNaghten, “Trace gas detection using a novel cantilever-based photoacoustic spectrometer with multiplexed optical fiber-coupled diode lasers and fiber-amplification,” Proc. SPIE6770, 67701C, 67701C-7 (2007). [CrossRef]
  27. T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc.51(2), 289–293 (2009). [CrossRef]
  28. J. Uotila, J. Lehtinen, T. Kuusela, S. Sinisalo, G. Maisons, F. Terzi, and I. Tittonen, “Drug precursor vapor phase sensing by cantilever enhanced photoacoustic spectroscopy and quantum cascade laser,” Proc. SPIE8545, 85450I, 85450I-13 (2012). [CrossRef]
  29. M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express16(15), 11141–11146 (2008). [CrossRef] [PubMed]
  30. M. Vainio, J. Peltola, S. Persijn, F. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009). [CrossRef]
  31. H. I. T. R. A. N. The, 2008 database, URL: http://www.hitran.com/ .
  32. G. Herzberg, Molecular spectra and molecular structure, Vol. 2: Infrared and Raman Spectra of Polyatomic Molecules (van Nostrand Reinhold Company, 1945).
  33. F. M. Schmidt, M. Metsälä, O. Vaittinen, and L. Halonen, “Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin,” J Breath Res5(4), 046004 (2011). [CrossRef] [PubMed]
  34. P. Bergamaschi, M. Schupp, and G. W. Harris, “High-precision direct measurements of 13CH4/12CH4 and 12CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer,” Appl. Opt.33(33), 7704–7716 (1994). [CrossRef] [PubMed]
  35. D. Wuebbles and K. Hayhoe, “Atmospheric methane and global change,” Earth Sci. Rev.57(3-4), 177–210 (2002). [CrossRef]
  36. A. Kosterev, T. Mosely, and F. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B85(2-3), 295–300 (2006). [CrossRef]
  37. P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001). [CrossRef]
  38. D. Arslanov, “Optical parametric oscillator based real-time trace gas analysis for bio-medical applications,” Ph.D. Thesis, Chapter 7, Radbound University, Nijmegen (2012).
  39. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited