OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 10278–10288

Enhanced 1.54 μm emission in Y-Er disilicate thin films on silicon photonic crystal cavities

R. Lo Savio, M. Miritello, A. Shakoor, P. Cardile, K. Welna, L. C. Andreani, D. Gerace, T. F. Krauss, L. O’Faolain, F. Priolo, and M. Galli  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10278-10288 (2013)
http://dx.doi.org/10.1364/OE.21.010278


View Full Text Article

Enhanced HTML    Acrobat PDF (1577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce an Y-Er disilicate thin film deposited on top of a silicon photonic crystal cavity as a gain medium for active silicon photonic devices. Using photoluminescence analysis, we demonstrate that Er luminescence at 1.54 μm is enhanced by coupling with the cavity modes, and that the directionality of the Er optical emission can be controlled through far-field optimization of the cavity. We determine the maximum excitation power that can be coupled into the cavity to be 12 mW, which is limited by free carrier absorption and thermal heating. At maximum excitation, we observe that nearly 30% of the Er population is in the excited state, as estimated from the direct measurement of the emitted power. Finally, using time-resolved photoluminescence measurements, we determine a value of 2.3 for the Purcell factor of the system at room temperature. These results indicate that overcoating a silicon photonic nanostructure with an Er-rich dielectric layer is a promising method for achieving light emission at 1.54 µm wavelength on a silicon platform.

© 2013 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.0230) Optical devices : Optical devices
(260.3800) Physical optics : Luminescence
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: December 11, 2012
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 15, 2013
Published: April 18, 2013

Citation
R. Lo Savio, M. Miritello, A. Shakoor, P. Cardile, K. Welna, L. C. Andreani, D. Gerace, T. F. Krauss, L. O’Faolain, F. Priolo, and M. Galli, "Enhanced 1.54 μm emission in Y-Er disilicate thin films on silicon photonic crystal cavities," Opt. Express 21, 10278-10288 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10278


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Shainline and J. Xu, “Silicon as an emissive optical medium,” Laser Photonics Rev.1(4), 334–348 (2007). [CrossRef]
  2. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics4(8), 511–517 (2010). [CrossRef]
  3. G. Franzò, F. Priolo, S. Coffa, A. Polman, and A. Carnera, “Room-temperature electroluminescence from Er-doped crystalline Si,” Appl. Phys. Lett.64(17), 2235–2237 (1994). [CrossRef]
  4. G. Davies, “The optical properties of luminescent centres in silicon,” Phys. Rep.176(3-4), 83–188 (1989). [CrossRef]
  5. W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature410(6825), 192–194 (2001). [CrossRef] [PubMed]
  6. S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater.4(12), 887–891 (2005). [CrossRef] [PubMed]
  7. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983). [CrossRef]
  8. A. Polman, G. N. van den Hoven, J. S. Custer, J. H. Shin, R. Serna, and P. F. A. Alkemade, “Erbium in crystal silicon: optical activation, excitation, and concentration limits,” J. Appl. Phys.77(3), 1256–1262 (1995). [CrossRef]
  9. S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter49(23), 16313–16320 (1994). [CrossRef] [PubMed]
  10. M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010). [CrossRef]
  11. M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007). [CrossRef]
  12. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express18(8), 7724–7731 (2010). [CrossRef] [PubMed]
  13. Y. Yin, W. J. Xu, F. Wei, G. Z. Ran, G. G. Qin, Y. F. Shi, Q. G. Yao, and S. D. Yao, “Room temperature Er 3+ 1.54 µm electroluminescence from Si-rich erbium silicate deposited by magnetron sputtering,” J. Phys. D Appl. Phys.43, 335102 (2010).
  14. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett.91(21), 211104 (2007). [CrossRef]
  15. M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron.14(4), 1090–1097 (2008). [CrossRef]
  16. R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett.98(20), 201106 (2011). [CrossRef]
  17. A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev.7(1), 114–121 (2013). [CrossRef]
  18. M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett.88(25), 251114 (2006). [CrossRef]
  19. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006). [CrossRef]
  20. J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippenberg, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 083103 (2006). [CrossRef]
  21. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009). [CrossRef] [PubMed]
  22. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, L. Dal Negro, and J. Vuckovic, “Observation of Transparency of Erbium-doped Silicon nitride in photonic crystal nanobeam cavities,” Opt. Express18(13), 13863–13873 (2010). [CrossRef] [PubMed]
  23. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express18(3), 2601–2612 (2010). [CrossRef] [PubMed]
  24. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  25. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express18(15), 16064–16073 (2010). [CrossRef] [PubMed]
  26. C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterization of photonic crystal slow light waveguides and cavities,” J. Vis. Exp. (69): e50216 (2012), doi:. [CrossRef] [PubMed]
  27. R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008). [CrossRef]
  28. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009). [CrossRef]
  29. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999)
  30. M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express16(12), 8780–8791 (2008). [CrossRef] [PubMed]
  31. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys.79(3), 1258–1266 (1996). [CrossRef]
  32. M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in erbium-ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011). [CrossRef] [PubMed]
  33. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681–681 (1946).
  34. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater.5(3), 159–167 (1996). [CrossRef]
  35. M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev.171(2), 283–291 (1968). [CrossRef]
  36. W. Fowler and D. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev.128(5), 2154–2165 (1962). [CrossRef]
  37. C. Creatore, L. C. Andreani, M. Miritello, R. Lo Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett.94(10), 103112 (2009). [CrossRef]
  38. L. C. Andreani, G. Panzarini, and J. M. Gerard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999). [CrossRef]
  39. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010). [CrossRef]
  40. J. M. Gérard, “Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots,” Top. Appl. Phys.90, 269–314 (2003). [CrossRef]
  41. G. L. J. A. Rikken and Y. A. R. R. Kessener, “Local field effects and electric and magnetic dipole transitions in dielectrics,” Phys. Rev. Lett.74(6), 880–883 (1995). [CrossRef] [PubMed]
  42. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29(14), 1626–1628 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited